Surface Morphology of Herbal Prepared Using Nanotechnology

Article Preview

Abstract:

Herb have been the basis of traditional medicines throughout the world for thousands of years and continue to provide new remedies to humankind In this study, Polygonum minus (kesum) nanoparticles were prepared by using planetary ball mill and analysis for their physical and morphology properties. The size reduction method had a distinct effect on physical and morphology properties of Polygonum minus analyzed. The surface morphology and roughness of nanoherb was analyzed by using Field Emission Scanning Electron Microscope (FSEM) and Atomic Force Microscope (AFM). The result showed that after ball milling, the average size of particles was produced in range 227-241nm which was significantly smaller than the 100 μm prepared by conventional rotor mixer. Higher degree of granule surface fractured was observed as a result of a planetary ball milling process based on FESEM images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

328-332

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Quintanilla-Carvajal, B. Camacho-Díaz, L. Meraz-Torres, J. Chanona-Pérez, L. Alamilla-Beltrán, A. Jimenéz-Aparicio, Nanoencapsulation: A new trend in food engineering processing, Food Engineering Reviews. 2(2010) 39–50.

DOI: 10.1007/s12393-009-9012-6

Google Scholar

[2] H. Bouwmeester, S. Dekkers, M. Y. Noordam, W. I. Hagens, A. S. Bulder, C. D. Heer, S. E. C. G. Ten Voorde, S. W. P. Wijnhoven, H. J. P. Marvin, Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology. 53 (2009) 52-62.

DOI: 10.1016/j.yrtph.2008.10.008

Google Scholar

[3] V. J. Mohanraj, Y. Chen, Nanoparticles – A Review. Tropical Journal of Pharmaceutical Research. 5 (2006) 561-573.

Google Scholar

[4] C. Monica, R. Cremonini, Nanoparticles and higher plants. Caryologia. 62(2009) 161-165.

DOI: 10.1080/00087114.2004.10589681

Google Scholar

[5] M. Cushen, J. Kerryb, M. Morrisc, M. Cruz-Romerob, E. Cummins , Nanotechnologies in the food industry – Recent developments, risks and regulation, Trends in Food Science & Technology. 24 (2012) 30-46.

DOI: 10.1016/j.tifs.2011.10.006

Google Scholar

[6] Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, R. Watkins, Review: Applications and implications of nanotechnologies for the food sector, Food Additives and Contaminants. 25 (2008) 241–258

DOI: 10.1080/02652030701744538

Google Scholar

[7] S. S. Bhadoriya, A. Mangal, N. Madoriya, P. Dixit, Bioavailability and Bioactivity Enhancement of Heral Drugs by "Nanotechnology" : A Review, Journal of Current Pharmaceutical Research. 8 (2011) 1-7.

Google Scholar

[8] H. D. Chen, J. C. Weiss, F. Shahidi, Nanotechnology in nutraceuticals and functional foods, Food Technology. 25 (2006) 30-36.

Google Scholar

[9] T. Takatsuka, T. Endo, Y. Jianguo, K. Yuminoki, N. Hashimoto, Nanosizing of Poorly Water Soluble Compounds Using Rotation/Revolution Mixer, Chem. Pharm. Bull. 57 (2009)1061-1067.

DOI: 10.1248/cpb.57.1061

Google Scholar

[10] X. Zhao, Z. Yang, G. Gai, Y. Yang, Effect of superfine grinding on properties of ginger powder, Journal of Food Engineering. 91 (2009) 217–222

DOI: 10.1016/j.jfoodeng.2008.08.024

Google Scholar

[11] M. Z. Borhan, R. Ahmad, M. Rusop, S. Abdullah, Optimization of ball milling parameters to produce Centella asiatica herbal nanopowder, Journal of Nanostructure in Chemistry. 3 (2013) 79.

DOI: 10.1186/2193-8865-3-79

Google Scholar

[12] J. C. Liu, Z. G. Jiao, X. H. Liang, L. Han, H. Liu, Effect of Ultrafine Pulverization on Properties of Apple Pomace Powder, Advanced Materials Research. Volx 236 – 238 (2011) 2560-2563.

DOI: 10.4028/www.scientific.net/amr.236-238.2560

Google Scholar

[13] J. R. Liu, G. F. Chen, H. N. Shih, P. C. Kuo, Enhanced antioxidant bioactivity of Salvia miltiorrhiza (Danshen) products prepared using nanotechnology, Phytomedicine. 15 (2008) 23-30.

DOI: 10.1016/j.phymed.2007.11.012

Google Scholar

[14] Y. I. Su, Z. Y. Fu, C. J. Quan, W. M. Wang, Fabrication of nano Rhizama Chuanxiong particles and determination of tetramethylpyrazine, Transactions of Nonferrous Metals Society of China. 16 (2006) s393-s397.

DOI: 10.1016/s1003-6326(06)60218-5

Google Scholar

[15] J. Lee, Drug nano- and microparticles processed into solid dosage forms: physical properties, J. Pharm. Sci. 92 (2003) 2057–2068.

DOI: 10.1002/jps.10471

Google Scholar

[16] A. Charkhi, H. Kazemian, M. Kazemeini, Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders, Powder Technology. 203 (2010) 389–396.

DOI: 10.1016/j.powtec.2010.05.034

Google Scholar

[17] S. Yashvanth, S. S. Rani, A. S. Rao, S. S. Madhavendra, Microscopic and micro chemical evaluation (elemental Analysis) of the medicinal herb, Lippia nodiflora (Linn.) Rich (Phyla nodiflora Linn. Green), Asian Pacific Journal of Tropical Disease. (2012) S124-S129 .

DOI: 10.1016/s2222-1808(12)60137-6

Google Scholar