Effect of Nano Size Powder of Polygonum minus by Ball Milling

Article Preview

Abstract:

Polygonum minus or ‘kesum’ is a traditional Malaysian plant used as flavoring agent and recommended for digestive disorders as well as stomach pain. The leaves are often eaten fresh as a vegetable (salad and ulam), especially among the Malay communities for preventive health care. The physicochemical characterization of nanosize of Polygonum minus in wet mill and dry mill was influenced by ball milling process using planetary ball mill. Particle size analysis employing photon correlation spectroscopy was carried out to record the effect of milling parameters on the particle size produced. Fourier Transform Infra-Red (FTIR) spectrum was recorded for functional groups analysis. The result showed that after ball milling, the average size of particles was reduced while FTIR results showed the peak at region of 1,600-1,500 cm-1 is due to the stretching vibration of carbonyl group and 1300-1,000 cm1 indicate a stretching of C-H group.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-339

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. H. Noor Haslinda, F. Abas, K. Shaari, N. H. Lajis, LC–DAD–ESIMS/MS characterization of antioxidant and anticholinesterase constituents present in the active fraction from Persicaria hydropiper, Food Science and Technology. 46 (2012) 468–476.

DOI: 10.1016/j.lwt.2011.11.021

Google Scholar

[2] B. Bunawan, C. Y. Choong, M. Z. Badrul Munir, B. Syarul Nataqin, M. N. Normah, Molecular Systematics of Polygonum minus Huds. Based on ITS Sequences, International journal of molecular sciences. 12 (2011) 7626–7634.

DOI: 10.3390/ijms12117626

Google Scholar

[3] A. Faridah, H. L. Nordin, D. A. Israf, S. Khozirah, Y. Umi Kalsom, Antioxidant and nitric oxide inhibition activities of selected Malay traditional vegetables, Food Chemistry. 95 (2006) 566-573.

DOI: 10.1016/j.foodchem.2005.01.034

Google Scholar

[4] S. W. Qader, M. A. Abdulla, L. S. Chua, N. Najim, M. M. Zain, S. Hamdan, Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants, Molecules. 16 (2011) 3433–3443.

DOI: 10.3390/molecules16043433

Google Scholar

[5] S.Vimala, M. A. Ilham, A. A. Rashih, S. Rohana, Nature's Choice to Wellness: Antioxidant Vegetable/Ulam, Siri Alam dan Rimba 7, Forest Research Institute Malaysia (FRIM), Malaysia, 2003.

Google Scholar

[6] A. Nurain, A. Noriham, M. N. Zainon, Z. Khairusy Syakirah, W. K. Wan Saifatul Syida, Phytochemical constituents and in vitro bioactivity of ethanolic aromatic herb extracts, Sains Malaysiana. 41 (2012)1437–1444.

Google Scholar

[7] S. W. Qader, M. A. Abdulla, L. S. Chua, H. Salehhuddin, Potential bioactive property of Polygonum minus Huds (kesum) review, Scientific Research and Essays. 7 (2012) 90–93.

Google Scholar

[8] S. Vimala, S. Rohana, A. A. Rashih, M. Juliza, Antioxidant evaluation in Malaysian medical plant: Persicaria minor (Huds.) Leaf, Science Journal of Medicine & Clinical Trials. (2012) 9-16.

Google Scholar

[9] M. Maizura, A. Aminah, W. M. Wan Aida, Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract, International Food Research Journal. 18(2011) 529–534.

DOI: 10.21448/ijsm.993906

Google Scholar

[10] S. Vimala, A. Mohd Ilham, Malaysian tropical forest medicinal plants: A source of natural antioxidants, Journal of Tropical Forest Products. 5(1999) 32-38.

Google Scholar

[11] A. Hidayah, A. Noriham, M. Rusop, The potential of Nanotechnology application in improving bioactivity of Malaysian plants, in Zainal, et al. (Eds.), Current issues in hospitality and tourism research and innovations, Taylor & Francis Group : London, 2012, pp.25-255.

DOI: 10.1201/b12752-49

Google Scholar

[12] P. Y. Ma, Z. Y. Fu, Y. L. Su, J. Y. Zhang, W. M. Wang, H. Wang, Modification of physicochemical and medicinal characterization of Liuwei Dihuang particles by ultrafine grinding, Powder Technology. 191 (2009) 194-199.

DOI: 10.1016/j.powtec.2008.10.008

Google Scholar

[13] T. Takatsuka, T. Endo, Y. Jianguo, K. Yuminoki, N. Hashimoto, Nanosizing of poorly water soluble compounds using rotation/revolution mixer, Chem. Pharm. Bull. 57 (2009)1061-1067.

DOI: 10.1248/cpb.57.1061

Google Scholar

[14] R. Sonada, M. Horibe, T. Oshima, T. Iwasaki, S. Watano, Improvement of dissolution Property of poorly water- soluble drug by novel dry coating method using planetary ball mill, Chem. Pharm. Bull. 56 (2008) 1243-1247.

DOI: 10.1248/cpb.56.1243

Google Scholar

[15] V. J. Mohanraj, Y. Chen, Nanoparticles – A review, Tropical Journal of Pharmaceutical Research. 5 (2006) 561-573.

Google Scholar

[16] S. S. Bhadoriya, A. Mangal, N. Madoriya, P. Dixit, Bioavailability and bioactivity enhancement of herbal drugs by "Nanotechnology" : A review, Journal of Current Pharmaceutical Research. 8 (2011) 1-7.

Google Scholar

[17] M. Cushen, J. Kerryb, M. Morrisc, M. Cruz-Romerob, E. Cummins, Nanotechnologies in the food industry – Recent developments, risks and regulation, Trends in Food Science & Technolog. 24 (2012) 30-46.

DOI: 10.1016/j.tifs.2011.10.006

Google Scholar

[18] H. D. Chen, J. C. Weiss, F. Shahidi, Nanotechnology in nutraceuticals and functional foods. Food Technology, 25 (2006) 30-36.

Google Scholar

[19] J. Kim, D. H. Jung, H. Rhee, S.-H. Choi, M. J. Sung, W. S. Choi, Improvement of bioavailability of water insoluble drugs: estimation of intrinsic bioavailability, Korean J. Chem. Eng. 25 (2008) 171-175.

DOI: 10.1007/s11814-008-0031-4

Google Scholar

[20] Y. I. Su, Z. Y. Fu, C. J. Quan, W. M. Wang, Fabrication of nano Rhizama Chuanxiong particles and determination of tetramethylpyrazine, Transactions of Nonferrous Metals Society of China. 16 (2006), s393-s397.

DOI: 10.1016/s1003-6326(06)60218-5

Google Scholar

[21] K. Itoh, A. Pongpeerapat, Y. Tozuka, T. Oguchi, K. Yamamoto, Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS, Chem. Pharm. Bull. 51 (2003) 171-174.

DOI: 10.1248/cpb.51.171

Google Scholar

[22] A. Charkhi, H. Kazemian, M. Kazemeini, Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders, Powder Technology. 203 (2010) 389–396.

DOI: 10.1016/j.powtec.2010.05.034

Google Scholar

[23] Y. Zhang, Y.Yang, K. Tang, X. Hu, G. Zou, Physicochemical characterization and antioxidant activity of Quercetin-loaded Chitosan nanoparticles, Journal of Applied Polymer Science. 107 (2008) 891-897.

DOI: 10.1002/app.26402

Google Scholar

[24] M. Z. Borhan, R. Ahmad, M. Rusop, S. Abdullah, Optimization of ball milling parameters to produce Centella asiatica herbal nanopowder, Journal of Nanostructure in Chemistry. 3 (2013) 79.

DOI: 10.1186/2193-8865-3-79

Google Scholar

[25] R. Rajkhowa, L. Wang, J. Kanwar, X.Wang, Fabrication of ultrafine powder from eri silk through attritor and jet milling, Powder Technology. 191 (2009)155–163.

DOI: 10.1016/j.powtec.2008.10.004

Google Scholar

[26] J. Lee, Drug nano- and microparticles processed into solid dosage forms: physical properties, J. Pharm. Sci. 92(2003) 2057–2068.

DOI: 10.1002/jps.10471

Google Scholar

[27] K. Khairudin, N. A. Sukiran, H. H. Gog, S. N. Baharum, N. M. Noor, Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy, Metabolomic. (2013) s11306.

DOI: 10.1007/s11306-013-0570-5

Google Scholar

[28] D. L. Pavia, G. M. Lampman, G. S. Kriz, Introduction to spectroscopy (3rd ed.) USA: Thompson Learning, (2001).

Google Scholar

[29] A. Suresh, T. Yasuhiro, S. Seikichi, T. Kazuhiko, K. Shigetoshi, Secoorthosiphols A-C: three highly oxygenated secoisopimarane-type diterpenes from Orthosiphon stamineus. Letters, 43 (2002) 1473-1475.

DOI: 10.1016/s0040-4039(02)00037-0

Google Scholar