Synthesis of Porous Anodic Alumina on Aluminium Manganese Alloys

Article Preview

Abstract:

In this study, porous anodic alumina was formed on aluminium alloy substrate with increasing manganese content, from high purity aluminium with 0 wt% Mn to aluminium alloy with 2.0 wt% manganese by anodizing. Substrates were anodized at 50 V in 0.3 M oxalic acid of 15°C for 60 minutes. Images from the optical microscope revealed that no secondary phase existed in high purity aluminium and aluminium substrate with 0.5 wt% manganese while two phases were observed when the manganese contents were higher than 0.5 wt%. Element dispersive X ray spectroscopy spot analysis suggested that the secondary phase consists of both aluminium and manganese. Well ordered porous anodic alumina was obtained on high purity aluminium and aluminium substrate with 0.5 wt% manganese while pore arrangement of porous anodic alumina was significant disturbed when aluminium alloys with manganese contents higher than 0.5 wt% were anodized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-82

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Keller, M.S. Hunter, and D.L. Robinson, Structural features of oxide coatings on aluminium, J. Electrochem. Soc. 100 (1953), 411-419.

DOI: 10.1149/1.2781142

Google Scholar

[2] S. Ono and N. Masuko, Evaluation of pore diameter of anodic porous films formed on aluminium, Surf. Coat. Technol. 169 (2003), 139-142.

DOI: 10.1016/s0257-8972(03)00197-x

Google Scholar

[3] H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science. 268 (1995), 1466-1468.

DOI: 10.1126/science.268.5216.1466

Google Scholar

[4] N. Kwon, K. Kim, J. Heo, and I. Chung, Fabrication of ordered anodic aluminum oxide with matrix arrays of pores using nanoimprint, J. Vac. Sci. Technol. A 27 (2009), 803-807.

DOI: 10.1116/1.3139884

Google Scholar

[5] C.Y. Liu, A. Datta, and Y.L. Wang, Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces, Appl. Phys. Lett. 78 (2001), 120-122.

DOI: 10.1063/1.1335543

Google Scholar

[6] G.H. Jeong, S.K. Lim, J.K. Park, D. Lee, B.K. Lee, and S.J. Suh, Microprocesses and Nanotechnology, 2007 Digest of papers (2007),192-193 .

Google Scholar

[7] L. Zaraska, G.D. Sulka, J. Szeremeta, and M. Jaskuła, Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminium, Electrochim. Acta 55 (2010), 4377-4386.

DOI: 10.1016/j.electacta.2009.12.054

Google Scholar

[8] Tsangaraki-Kaplanoglou, S. Theohari, T. Dimogerontakis, Y.-M. Wang, H.-H. Kuo, and S. Kia, Effect of alloy types on the anodizing process of aluminium, Surf. Coat. Technol. 200 (2006), 2634-2641.

DOI: 10.1016/j.surfcoat.2005.07.065

Google Scholar

[9] C. H. Voon, M. N. Derman, and U. Hashim, Effect of manganese content on the fabrication of porous anodic alumina, J.Nanomater. 2012 (2012), 1-9.

DOI: 10.1155/2012/752926

Google Scholar

[10] C. H. Voon, M. N. Derman, U. Hashim, K. R. Ahmad, and K. L. Foo, Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys, J.Nanomater. 2013 (2013), 1-8.

DOI: 10.1155/2013/167047

Google Scholar

[11] C. H. Voon, M. N. Derman, U. Hashim, and K. L. Foo, Effect of anodizing voltage on the formation of porous anodic alumina on Al-0.5wt% Mn alloys, Adv. Mat. Res. 626 (2013), 610-614.

DOI: 10.4028/www.scientific.net/amr.925.455

Google Scholar

[12] C. H. Voon, M. N. Derman, U. Hashim and K. R. Ahmad, Effect of anodizing voltage on the growth kinetics of porous anodic alumina on Al-0.5 wt% Mn alloys, Adv. Mat. Res. 795 (2013), 56-59.

DOI: 10.4028/www.scientific.net/amr.795.56

Google Scholar

[13] C. H. Voon, M. N. Derman, U. Hashim, and K. L. Foo and T. Adam, Effect of anodizing voltage on the morphology and growth kinetics of porous anodic alumina on Al-0.5 wt% Mn alloys, Adv. Mat. Res. 832 (2014), 101-106.

DOI: 10.4028/www.scientific.net/amr.832.101

Google Scholar

[14] C.H. Voon, M.N. Derman, U. Hashim, K.R. Ahmad & L.N. Ho, A simple one-step anodising method for the synthesis of ordered porous anodic alumina, J. Exp. Nanosci. 9 (2014), 106-112.

DOI: 10.1080/17458080.2011.630151

Google Scholar

[15] W. J. Stepniowski, D. Zasada, & Z. Bojar, Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features, Surf. Coating Tech. 206(2011), 265-272.

DOI: 10.1016/j.surfcoat.2011.07.020

Google Scholar

[16] K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, & U. Gösele, Self-ordering regimes of porous alumina:  the 10 porosity rule, Nano Lett. 2 (2002), 677-680.

DOI: 10.1021/nl025537k

Google Scholar

[17] A. Li, F. Müller, A. Birner, K. Nielsch, & U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84 (1998), 6023-6026.

DOI: 10.1063/1.368911

Google Scholar

[18] L. E. Fratila-Apachitei, F. D. Tichelaar, G. E. Thompson, H. Terryn, P. Skeldon, J. Duszczyk, L. Katgerman, A trasmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys, Electrochim. Acta 49 (2004), 3169-3177.

DOI: 10.1016/j.electacta.2004.02.030

Google Scholar