Impact of Different Mobility Models on 32nm Node UTBB SOI MOSFETs

Article Preview

Abstract:

In this work, we investigate by numerical simulation the impact of using standard mobility models versus an inclusion of thin-layer mobility models on 7 nm thin body and 10 nm thin buried oxide (UTBB) SOI MOSFETs of 25 nm gate length (Lg=25 nm). Simulations were performed for both no-ground plane (no-GP) and ground plane (GP) structures for Vds = 20 mV and 1.0 V and substrate biasing of Vsub = 0 V and 0.5 V. Results of on-current (Ion), off-current (Ioff) and linear subthreshold swing (SSlin) only showed marginal differences between the two mobility models used. Significant differences can only be seen in the values of Drain-Induced Barrier Lowering (DIBL) where in this work is extracted as DIBL=(Vthlin - Vthsat)/ΔVd. Moreover, the inclusion of thin layer mobility model gives higher values of transconductance (gm) as compared to standard mobility model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-93

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ernst, D. Munteanu, S. Cristoloveanu, T. Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi, and K. Murase, "Investigation of SOI MOSFETs with ultimate thickness," Microelectron. Eng., vol. 48, p.339–342, 1999.

DOI: 10.1016/s0167-9317(99)00400-1

Google Scholar

[2] B. Majkusiak, T. Janik, and J. Walczak, "Semiconductor Thickness Effects In The Double-gate Soi Mosfet - Electron Devices, IEEE Transactions on," May, vol. 45, no. 5, p.1127–1134, 1998.

DOI: 10.1109/16.669563

Google Scholar

[3] S. Takagi, a. Toriumi, M. Iwase, and H. Tango, "On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration," IEEE Trans. Electron Devices, vol. 41, no. 12, p.2357–2362, 1994.

DOI: 10.1109/16.337449

Google Scholar

[4] M. Turowski, A. Raman, and W. Xiong, "Accurate Modeling of SOI Multi-Gate FETs and Their Transient Response to Radiation," in IEEE 13th International Conference on Ultimate Integration on Silicon (ULIS), 2012, p.137–140.

DOI: 10.1109/ulis.2012.6193376

Google Scholar

[5] S. Reggiani, E. Gnani, A. Gnudi, M. Rudan, S. Member, and G. Baccarani, "Low-Field Electron Mobility Model for Ultrathin-Body SOI and Double-Gate MOSFETs With Extremely Small Silicon Thicknesses," IEEE Trans. Electron Devices, vol. 54, no. 9, p.2204–2212, 2007.

DOI: 10.1109/ted.2007.902899

Google Scholar

[6] a. Ohata, M. Cassé, and S. Cristoloveanu, "Front- and back-channel mobility in ultrathin SOI-MOSFETs by front-gate split CV method," Solid. State. Electron., vol. 51, no. 2, p.245–251, Feb. 2007.

DOI: 10.1016/j.sse.2007.01.015

Google Scholar

[7] G. A. Armstrong and C.K. Maiti, TCAD for Si, SiGe and GaAs Integrated Circuits. Stevenage : The Institution of Engineering and Technology, 2007.

Google Scholar

[8] S. Burignat, D. Flandre, M. K. Md Arshad, V. Kilchytska, F. Andrieu, and et al, "Substrate impact on threshold voltage and subthreshold slope of sub-32nm ultra thin SOI MOSFETs with thin buried oxide and undoped channel," Solid. State. Electron., vol. 54, no. 2, p.213–219, 2010.

DOI: 10.1016/j.sse.2009.12.021

Google Scholar

[9] V. E-, "Sentaurus Device User," System, no. December, 2010.

Google Scholar

[10] R. Yan, R. Duane, P. Razavi, A. Afzalian, I. Ferain, C. Lee, N. D. Akhavan, B. Nguyen, K. K. Bourdelle, and J. Colinge, "LDD and Back-Gate Engineering for Fully Depleted Planar SOI Transistors with Thin Buried Oxide," IEEE Trans. Electron Devices, vol. 57, no. 6, p.1319–1326, 2010.

DOI: 10.1109/ted.2010.2046097

Google Scholar

[11] M. Arshad, J. Raskin, V. Kilchytska, F. Andrieu, P. Scheiblin, and et al, "Extended MASTAR modeling of DIBL in UTB and UTBB SOI MOSFETs," IEEE Trans. Electron Devices, vol. 59, no. 1, p.247–251, 2012.

DOI: 10.1109/ted.2011.2172993

Google Scholar

[12] J.-P. Colinge and C. A. Colinge, Physics of Semiconductor Devices. Kluwer Academic Publishers, 2002.

Google Scholar

[13] M. K. Md Arshad, S. Makovejev, S. Olsen, F. Andrieu, J.-P. Raskin, D. Flandre, and V. Kilchytska, "UTBB SOI MOSFETs analog figures of merit : Effects of ground plane and asymmetric double-gate regime," Solid State Electron., vol. 90, p.56–64, 2013.

DOI: 10.1016/j.sse.2013.02.051

Google Scholar

[14] C. Fenouillet-Beranger, S. Denorme, P. Perreau, C. Buj, O. Faynot, F. Andrieu, L. Tosti, S. Barnola, T. Salvetat, X. Garros, M. Casse, F. Allain, N. Loubet, L. Pham-Nguyen, E. Deloffre, M. Gros-Jean, R. Beneyton, C. Laviron, M. Marin, C. Leyris, S. Haendler, F. Leverd, P. Gouraud, P. Scheiblin, L. Clement, R. Pantel, S. Deleonibus, and T. Skotnicki, "FDSOI devices with thin BOX and ground plane integration for 32nm node and below," Solid. State. Electron., vol. 53, no. 7, p.730

DOI: 10.1109/essderc.2008.4681734

Google Scholar

[15] C. Fenouillet-Beranger, P. Perreau, S. Denorme, L. Tosti, F. Andrieu, O. Weber, S. Monfray, S. Barnola, C. Arvet, Y. Campidelli, S. Haendler, R. Beneyton, C. Perrot, C. de Buttet, P. Gros, L. Pham-Nguyen, F. Leverd, P. Gouraud, F. Abbate, F. Baron, a. Torres, C. Laviron, L. Pinzelli, J. Vetier, C. Borowiak, a. Margain, D. Delprat, F. Boedt, K. Bourdelle, B.-Y. Nguyen, O. Faynot, and T. Skotnicki, "Impact of a 10nm ultra-thin BOX (UTBOX) and ground plane on FDSOI devices for 32nm node and below," Solid. State. Electron., vol. 54, no. 9, p.849

DOI: 10.1016/j.sse.2010.04.009

Google Scholar

[16] H. P. Wong, S. Member, D. J. Frank, P. M. Solomon, C. H. J. Wann, and J. J. Welser, "Nanoscale CMOS," Technology, vol. 87, no. 4, 1999.

Google Scholar

[17] T. Ernst, C. Tinella, C. Raynaud, and S. Cristoloveanu, "Fringing fields in sub-0.1 µm fully depleted SOI MOSFETs: Optimization of the device architecture," Solid State Electron., vol. 46, no. 3, p.373–378, 2002.

DOI: 10.1016/s0038-1101(01)00111-3

Google Scholar