Structural and Electrical Properties of Hydrothermal Growth ZnO Nanorods

Article Preview

Abstract:

ZnO nanorods, type of the metal-oxide semiconductor deposited on interdigitated electrode (IDE) substrate using hydrothermal growth technique. The growth ZnO nanorods was annealed in furnace at 500°C for 2 hours as to obtain highly crystallite of ZnO nanorods. XRD pattern indicated the synthesized ZnO nanorods have preferred orientation along the (002) plane. Moreover, FESEM images showed that the nanorods with the size less than 60 nanometer were successfully synthesized using hydrothermal growth technique. The investigation on optical properties using UV-Vis-NIR spectrophotometer confirmed ZnO is classified as a wide band gap semiconductor material. Furthermore, the growth ZnO nanorods which undergo electrical properties testing using dielectric analyzer and source meter show that the ZnO nanorods demonstrated rectifying behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-107

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.M. Usman Ali, O. Nur, M. Willander, B. Danielsson, A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire, Sensors and Actuators B: Chemical, 145 (2010) 869-874.

DOI: 10.1016/j.snb.2009.12.072

Google Scholar

[2] G. Chai, O. Lupan, L. Chow, H. Heinrich, Crossed zinc oxide nanorods for ultraviolet radiation detection, Sensors and Actuators A: Physical, 150 (2009) 184-187.

DOI: 10.1016/j.sna.2008.12.020

Google Scholar

[3] K.L. Foo, U. Hashim, M. Kashif, Study of Zinc Oxide Films on SiO2/Si Substrate by Sol–Gel Spin Coating Method for pH Measurement, Applied Mechanics and Materials, 284 (2013) 347-351.

DOI: 10.4028/www.scientific.net/amm.284-287.347

Google Scholar

[4] W. Shen, Y. Zhao, C. Zhang, The preparation of ZnO based gas-sensing thin films by ink-jet printing method, Thin Solid Films, 483 (2005) 382-387.

DOI: 10.1016/j.tsf.2005.01.015

Google Scholar

[5] M. Kashif, S.M. Usman Ali, M.E. Ali, H.I. Abdulgafour, U. Hashim, M. Willander, Z. Hassan, Morphological, optical, and Raman characteristics of ZnO nanoflakes prepared via a sol–gel method, physica status solidi (a), 209 (2012) 143-147.

DOI: 10.1002/pssa.201127357

Google Scholar

[6] J. Su, C. Tang, Q. Niu, C. Zang, Y. Zhang, Z. Fu, Microstructure, optical and electrical properties of Al-doped ZnO films grown by MOCVD, Applied Surface Science, 258 (2012) 8595-8598.

DOI: 10.1016/j.apsusc.2012.05.056

Google Scholar

[7] T. Moriyama, S. Fujita, Crystal growth of ZnO on Si(1 1 1) by metalorganic vapor phase epitaxy, Journal of Crystal Growth, 298 (2007) 464-467.

DOI: 10.1016/j.jcrysgro.2006.10.222

Google Scholar

[8] A. Bakin, A. Che Mofor, A. El-Shaer, A. Waag, Vapour phase transport growth of ZnO layers and nanostructures, Superlattices and Microstructures, 42 (2007) 33-39.

DOI: 10.1016/j.spmi.2007.04.067

Google Scholar

[9] D.-I. Suh, C.C. Byeon, C.-L. Lee, Synthesis and optical characterization of vertically grown ZnO nanowires in high crystallinity through vapor–liquid–solid growth mechanism, Applied Surface Science, 257 (2010) 1454-1456.

DOI: 10.1016/j.apsusc.2010.08.067

Google Scholar

[10] K.L. Foo, M. Kashif, U. Hashim, W.-W. Liu, Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications, Ceram. Int., 40 (2014) 753-761.

DOI: 10.1016/j.ceramint.2013.06.065

Google Scholar

[11] Z. Li, X. Huang, J. Liu, Y. Li, G. Li, Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method, Materials Letters, 62 (2008) 1503-1506.

DOI: 10.1016/j.matlet.2007.09.011

Google Scholar

[12] X. Zhao, J.Y. Lee, C.-R. Kim, J. Heo, C.M. Shin, J.-Y. Leem, H. Ryu, J.-H. Chang, H.C. Lee, W.-G. Jung, C.-S. Son, B.C. Shin, W.-J. Lee, S.T. Tan, J. Zhao, X. Sun, Dependence of the properties of hydrothermally grown ZnO on precursor concentration, Physica E: Low-dimensional Systems and Nanostructures, 41 (2009) 1423-1426.

DOI: 10.1016/j.physe.2009.04.012

Google Scholar