Synthesis of Fe3O4 Nanoparticles to Synthesize Bundles of Single-Walled Carbon Nanotubes

Article Preview

Abstract:

Magnetite (Fe3O4) nanoparticles were synthesized in aqueous solutions without any surfactants. The Fe3O4 nanoparticles are nearly spherical and have an average diameter of 10.33nm and a narrow size distribution. Bundles of single-walled carbon nanotube (SWCNT) were synthesized using these Fe3O4 nanoparticles supported by MgO. Transmission electron microscopy (TEM) images show that tremendous amount of bundles SWCNT with uniform diameters were produced. The average diameter of bundles SWCNT is 1.22nm. Raman spectrum shows that well graphitized SWCNTs were formed based on the low ratio of ID/IG. Fe3O4 nanoparticles could be an effective active metal to synthesize large quantity bundles of SWCNT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-112

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.

DOI: 10.1038/363603a0

Google Scholar

[3] S.P. Chai, W.W. Liu, K.Y. Lee, W.M. Yeoh, V.M. Sivakumar, A.R. Mohamed, Effect of FeOx loaded on CoOx/Al2O3 catalyst for the formation of thin-walled carbon nanotubes, Materials Letters 63 (2009) 1428-1430.

DOI: 10.1016/j.matlet.2009.03.019

Google Scholar

[4] W.W. Liu, T. Adam, A. Aziz, S.P. Chai, A.R. Mohamed, U. Hashim, Formation of carbon nanotubes from methane decomposition: Effect of concentration of Fe3O4 on the diameters distributions, Advanced Materials Research 832 (2014) 62-67.

DOI: 10.4028/www.scientific.net/amr.832.62

Google Scholar

[5] W.W. Liu, T. Adam, A. Aziz, S.P. Chai, A.R. Mohamed, U. Hashim, A study on the effect of calcination temperature on the graphitization of carbon nanotubes synthesized by the decomposition of methane, Advanced Materials Research 832 (2014) 56-61.

DOI: 10.4028/www.scientific.net/amr.832.56

Google Scholar

[6] W.W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, U. Hashim, Synthesis of single-walled carbon nanotubes: Effects of active metals, catalyst supports, and metal loading percentage, Journal of Nanomaterials 2013 (2013).

DOI: 10.1155/2013/592464

Google Scholar

[7] W.W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, C.T. Tye, The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition, Physica E: Low-Dimensional Systems and Nanostructures 43 (2011) 1535-1542.

DOI: 10.1016/j.physe.2011.05.012

Google Scholar

[8] W.W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, C.T. Tye, Optimisation of reaction conditions for the synthesis of single-walled carbon nanotubes using response surface methodology, Canadian Journal of Chemical Engineering 90 (2012) 489-505.

DOI: 10.1002/cjce.20561

Google Scholar

[9] W.W. Liu, A. Aziz, S.P. Chai, C.T. Tye, A.R. Mohamed, Broad bundles of single-walled carbon nanotube synthesized over Fe2O3/MgO via chemical vapor deposition of methane, Nano 4 (2009) 77-81.

DOI: 10.1142/s1793292009001526

Google Scholar

[10] W.W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, C.T. Tye, Preparation of iron oxide nanoparticles supported on magnesium oxide for producing high-quality single-walled carbon nanotubes, Xinxing Tan Cailiao/New Carbon Materials 26 (2011) 255-261.

DOI: 10.1016/s1872-5805(11)60080-2

Google Scholar

[11] S.M. Tan, Chai SP, W.W. Liu, A.R. Mohamed, Effects of FeOx, CoOx, and NiO catalysts and calcination temperatures on the synthesis of single-walled carbon nanotubes through chemical vapor deposition of methane, Journal of Alloys and Compounds 477 (2009) 785-788.

DOI: 10.1016/j.jallcom.2008.10.114

Google Scholar

[12] J.H. Teong Ooi, W.W. Liu, V. Thota, A.R. Mohamed, S.P. Chai, Synthesis of single-walled carbon nanotubes by chemical vapor deposition using sodium chloride support, Physica E: Low-Dimensional Systems and Nanostructures 43 (2011) 1011-1014.

DOI: 10.1016/j.physe.2010.12.003

Google Scholar

[13] V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, The study of carbon nanotubes produced by catalytic method, Chem. Phys. Lett. 223 (1994) 329-335.

DOI: 10.1016/0009-2614(94)00467-6

Google Scholar

[14] R. Seidel, G.S. Duesberg, E. Unger, A.P. Graham, M. Liebau, F. Kreupl, Chemical vapor deposition growth of single-walled carbon nanotubes at 600oC and a simple growth model, J. Phys. Chem. B. 108 (2004) 1888-1893.

DOI: 10.1021/jp037063z

Google Scholar

[15] C. Sun, J.C. Berg, A Review of the Different Techniques for Solid Surface Acid-Base Characterization, Adv. Colloid Interface Sci. 105 (2003) 151-175.

DOI: 10.1016/s0001-8686(03)00066-6

Google Scholar

[16] W.W. Liu, A. Aziz, , A.R. Mohamed, U. Hashim, Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments, Journal of Industrial and Engineering Chemistry 20 (2014) 1171-1185.

DOI: 10.1016/j.jiec.2013.08.028

Google Scholar

[17] S.P. Chai, S.H.S. Zein, A.R. Mohamed, Moderate temperature synthesis of single-walled carbon nanotubes on alumina supported nickel oxide catalyst, Mater. Lett. 61 (2007) 3519-3521.

DOI: 10.1016/j.matlet.2006.11.108

Google Scholar

[18] Y. Li, J. Liu, Preparation of Monodispersed Fe−Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes, Chem. Mater. 13 (2001) 1008-1014.

DOI: 10.1021/cm000787s

Google Scholar

[19] A.C. Depuis, The catalyst in the CCVD of carbon nanotubes-a review, Prog. Mater. Sci. 50 (2005) 929-961.

Google Scholar

[20] M.A. Pimenta, A. Jorio, S.D.M. Brown, A.G. Souza Filho, G. Dresselhaus, J.H. Hafner, C.M. Lieber, R. Saito, M.S. Dresselhaus, Diameter dependence of the Raman D-band in isolated single-walled carbon nanotubes, Phys. Rev. B. 64 (2001) 041401-041405.

DOI: 10.1103/physrevb.64.041401

Google Scholar

[21] W. Qian, T. Liu, F. Wei, H. Yuan, Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes, Carbon 41 2003 1851-1854.

DOI: 10.1016/s0008-6223(03)00106-4

Google Scholar

[22] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports. 409 (2005) 47-99.

DOI: 10.1016/j.physrep.2004.10.006

Google Scholar