[1]
O. Mäyrä and K. Leiviskä, Modelling in methanol synthesis, Chem. Eng. 17 (2009) 1413-1418.
Google Scholar
[2]
D. Rahman, Kinetic Modeling of Methanol Synthesis From Carbon Monoxide, Carbon Dioxide, And Hydrogen Over A Cu/ZnO/Cr2O3 Catalyst, M.S. Thesis, Dept. Chem. Eng., San Jose State University, Northern California, 2012.
DOI: 10.31979/etd.tpdm-4bgg
Google Scholar
[3]
G. Chinchen, K. Waugh, and D. Whan, The activity and state of the copper surface in methanol synthesis catalysts, Appl. Catal. 25 (1986) 101-107.
DOI: 10.1016/s0166-9834(00)81226-9
Google Scholar
[4]
S. P. Naik, S. Elangovan, T. Okubo, and I. Sokolov, Morphology control of mesoporous silica particles, J. Phys. Chem. C. 111 (2007) 11168-11173.
DOI: 10.1021/jp072184a
Google Scholar
[5]
M. Hartmann, Ordered mesoporous materials for bioadsorption and biocatalysis, Chem. of mater. 17 (2005) 4577-4593.
DOI: 10.1021/cm0485658
Google Scholar
[6]
L. F. Chen, P. J. Guo, L. J. Zhu, M. H. Qiao, W. Shen, H. L. Xu, and K. N. Fan, Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1, 4-butanediol, Appl. Catal. A: General 356 (2009) 129-136.
DOI: 10.1016/j.apcata.2008.12.029
Google Scholar
[7]
A. J. Crisci, M. H. Tucker, M. Y. Lee, S. G. Jang, J. A. Dumesic, and S. L. Scott, Acid-Functionalized SBA-15-Type Silica Catalysts for Carbohydrate Dehydration, ACS Catal. 1 (2011) 719-728.
DOI: 10.1021/cs2001237
Google Scholar
[8]
A. Ungureanu, B. Dragoi, V. Hulea, T. Cacciaguerra, D. Meloni, V. Solinas, and E. Dumitriu, Effect of Aluminum Incorporation by the pH-adjusting Method on the Structural, Acidic and Catalytic Properties of Mesoporous SBA-15, Microporous Mesoporous Mater. 163 (2012) 51-64.
DOI: 10.1016/j.micromeso.2012.05.007
Google Scholar
[9]
F. Meshkini, M. Taghizadeh, and M. Bahmani, Investigating the effect of metal oxide additives on the properties of Cu/ZnO/Al2O3 catalysts in methanol synthesis from syngas using factorial experimental design, Fuel. 89 (2010) 170-175.
DOI: 10.1016/j.fuel.2009.07.007
Google Scholar
[10]
J. Dacquin, A. Lee, C. Pirez, and K. Wilson, Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis, Chem. Commun. 48 (2012) 212-214.
DOI: 10.1039/c1cc14563k
Google Scholar
[11]
J. P. Thielemann, F. Girgsdies, R. Schlögl, and C. Hess, Pore structure and surface area of silica SBA-15: influence of washing and scale-up, Beilstein J. Nanotechnol. 2 (2011) 110-118.
DOI: 10.3762/bjnano.2.13
Google Scholar
[12]
R. Pierotti and J. Rouquerol, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603-619.
DOI: 10.1351/pac198557040603
Google Scholar
[13]
I. Melian-Cabrera, M. López Granados, P. Terreros, and J. Fierro, CO2 hydrogenation over Pd-modified methanol synthesis catalysts, Catal. today, 45 (1998) 251-256.
DOI: 10.1016/s0920-5861(98)00224-7
Google Scholar