The Effect of Chemical Solutions (Isopropyl Alcohol, Dichloromethane, Acetone and Triton X-100) on the Dispersion of Single-Walled Carbon Nanotubes

Article Preview

Abstract:

The effect of chemical solutions on the dispersion of single-walled carbon nantubes (SWCNTs) was studied. The SWCNTs were dispersed using several chemical solutions such as isopropyl alcohol (IPA), dichloromethane (DCM), acetone and triton X-100 (Triton-X) under ultrasonically process. The results show that the types of chemical solutions greatly affect the dispersion of SWCNTs. The IPA solution is found to be the best solution to disperse SWCNTs using ultrasonication process due to the difficultly of evaporation in room temperature to get a transparent solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-117

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.

DOI: 10.1038/363603a0

Google Scholar

[3] S.P. Chai, W.W. Liu, K.Y. Lee, W.M. Yeoh, V.M. Sivakumar, A.R. Mohamed, Effect of FeOx loaded on CoOx/Al2O3 catalyst for the formation of thin-walled carbon nanotubes, Materials Letters 63 (2009) 1428-1430.

DOI: 10.1016/j.matlet.2009.03.019

Google Scholar

[4] W.W. Liu, T. Adam, A. Aziz, S.P. Chai, A.R. Mohamed, U. Hashim, Formation of carbon nanotubes from methane decomposition: Effect of concentration of Fe3O4 on the diameters distributions, Advanced Materials Research 832 (2014) 62-67.

DOI: 10.4028/www.scientific.net/amr.832.62

Google Scholar

[5] W.W. Liu, T. Adam, A. Aziz, S.P. Chai, A.R. Mohamed, U. Hashim, A study on the effect of calcination temperature on the graphitization of carbon nanotubes synthesized by the decomposition of methane, Advanced Materials Research 832 (2014) 56-61.

DOI: 10.4028/www.scientific.net/amr.832.56

Google Scholar

[6] W.W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, U. Hashim, Synthesis of single-walled carbon nanotubes: Effects of active metals, catalyst supports, and metal loading percentage, Journal of Nanomaterials 2013 (2013).

DOI: 10.1155/2013/592464

Google Scholar

[7] W.W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, C.T. Tye, The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition, Physica E: Low-Dimensional Systems and Nanostructures 43 (2011) 1535-1542.

DOI: 10.1016/j.physe.2011.05.012

Google Scholar

[8] W.W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, C.T. Tye, Optimisation of reaction conditions for the synthesis of single-walled carbon nanotubes using response surface methodology, Canadian Journal of Chemical Engineering 90 (2012) 489-505.

DOI: 10.1002/cjce.20561

Google Scholar

[9] W.W. Liu, A. Aziz, S.P. Chai, C.T. Tye, A.R. Mohamed, Broad bundles of single-walled carbon nanotube synthesized over Fe2O3/MgO via chemical vapor deposition of methane, Nano 4 (2009) 77-81.

DOI: 10.1142/s1793292009001526

Google Scholar

[10] W.W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, C.T. Tye, Preparation of iron oxide nanoparticles supported on magnesium oxide for producing high-quality single-walled carbon nanotubes, Xinxing Tan Cailiao/New Carbon Materials 26 (2011) 255-261.

DOI: 10.1016/s1872-5805(11)60080-2

Google Scholar

[11] S.M. Tan, Chai SP, W.W. Liu, A.R. Mohamed, Effects of FeOx, CoOx, and NiO catalysts and calcination temperatures on the synthesis of single-walled carbon nanotubes through chemical vapor deposition of methane, Journal of Alloys and Compounds 477 (2009) 785-788.

DOI: 10.1016/j.jallcom.2008.10.114

Google Scholar

[12] J.H. Teong Ooi, W.W. Liu, V. Thota, A.R. Mohamed, S.P. Chai, Synthesis of single-walled carbon nanotubes by chemical vapor deposition using sodium chloride support, Physica E: Low-Dimensional Systems and Nanostructures 43 (2011) 1011-1014.

DOI: 10.1016/j.physe.2010.12.003

Google Scholar

[13] D. Tasis D, N. Tagmatarchis, V. Georgakilas, M. Prato M, Soluble carbon nanotubes, Chem.Eur. J. 9 (2003) 4000–4008.

DOI: 10.1002/chem.200304800

Google Scholar

[14] J. Hilding, E.A. Grulke, Z. George, F. Lockwood, Dispersion of nanotube in Liquid, Journal of Dispersion Science and Technology 24 (2003) 1–41.

DOI: 10.1081/dis-120017941

Google Scholar

[15] L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes, Adv. Colloid Interface Sci. 128–130 (2006) 37–46.

DOI: 10.1016/j.cis.2006.11.007

Google Scholar

[16] M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes, J. Nanosci. Nanotechnol. 3 (2003) 81-86.

DOI: 10.1166/jnn.2003.194

Google Scholar

[17] M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett. 3 (2003) 269-273.

DOI: 10.1021/nl025924u

Google Scholar

[18] R. Rastogi, R. Kaushal, S.K. Tripathi, A.M. Sharma, I. Kaur, L.M. Bharadwaj, Comparative study of carbon nanotube dispersion using surfactants, J. Colloid Interface Sci. 328 (2008) 421-428.

DOI: 10.1016/j.jcis.2008.09.015

Google Scholar