Simulation of Dirac Electron Tunneling Current in Armchair Graphene Nanoribbon Tunnel Field-Effect Transistors Using a Transfer Matrix Method

Article Preview

Abstract:

We simulate quantum mechanical tunneling current in armchair graphene nanoribbon tunnel field-effect transistors (AGNR-TFETs). The relativistic Dirac equation is used to determine electron wave functions in the AGNRs, while the potential profile is solved by the Poisson equation. We use a transfer matrix method (TMM) to calculate the electron transmittance and the Dirac electron tunneling current in the AGNR-TFETs. The results show that the Dirac electron tunneling current increases with increasing the drain and gate voltages. Moreover, the AGNR width and the thickness of insulator affect the characteristics of the Dirac electron tunneling currents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-132

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] M. I. Katsnelson, K. S. Novoselov, A. K. Geim, Chiral Tunnelling and the Klein Paradox in Graphene, Nature Phys. 2 (2006) 620-625.

DOI: 10.1038/nphys384

Google Scholar

[3] L. Brey and H. A. Fertig, Electronic states of grapheme nanoribbons, Phys. Rev. B 73 (2006) 235411-1/5.

Google Scholar

[4] Y. W. Son, M. L. Cohen, and S. G. Loui, Energy Gaps in Graphene Nanoribbons, Phys. Rev. Lett. 97 (2006) 216803-1/4.

DOI: 10.1103/physrevlett.98.089901

Google Scholar

[5] B. Huang, Q. Yan, Z. Li and W. Duan, Towards graphene nanoribbon-based electronics. Front. Phys. China 4 (2009) 269-279.

DOI: 10.1007/s11467-009-0029-3

Google Scholar

[6] Q. Zhang, T. Fang, H. Xing, A. Seabaugh and D. Jena, Graphene nanoribbon tunnel transistors, IEEE Electron Device Lett. 29 (2008) 1344-1346.

DOI: 10.1109/led.2008.2005650

Google Scholar

[7] C. S .P. Bimo, F. A. Noor, M. Abdullah, Khairrurijal, A Theoretical Model of Band-to-Band Tunneling Current in an Armchair Graphene Nanoribbon Tunnel Field-Effect Transistor, Adv. Mater. Res. 896 (2014) 371-374.

DOI: 10.4028/www.scientific.net/amr.896.371

Google Scholar

[8] P. Zhao, J. Chauhan, J. Guo, Computational Study of Tunneling Transistor Based on Graphene Nanoribbon, Nano Lett. 9 (2009) 684-688.

DOI: 10.1021/nl803176x

Google Scholar

[9] F. Liu, X. Liu, J. Kang and Y. Wang, http: /www. arxiv. org (2013) 13123391-1/3.

Google Scholar

[10] W. Z. Shangguan, X. Zhou, S.B. Chiah, G. H. See, K. Chandrasekaran, Compact gate-current model based on transfer-matrix, J. Appl. Phys. 97 (2005) 123709-1/4.

DOI: 10.1063/1.1929885

Google Scholar

[11] B. Huang, Q. Yan, G. Zhou, J. Wu, F. Liu, B. L. Gu, W. Duan, Making a field effect transistor on a single graphene nanoribbon by selective doping, Appl. Phys. Lett. 91 (2007) 253122-1/4.

DOI: 10.1063/1.2826547

Google Scholar

[12] J. Knoch and J. Appenzeller, Tunneling phenomena in carbon nanotube field-effect transistors, Phys. Status Solidi A 205 (2008) 679–694.

DOI: 10.1002/pssa.200723528

Google Scholar

[13] E. Suhendi, R. Syariati, F. A Noor, N. Kurniasih, Khairurrijal, Simulation of Dirac Tunneling Current of an Armchair Graphene Nanoribbon-Based PN Junction Using a Transfer Matrix Method, Adv. Mater. Res. 974 (2014) 205-209.

DOI: 10.4028/www.scientific.net/amr.974.205

Google Scholar

[14] D. K. Ferry, S.M. Goodnick, J. Bird, Transport in Nanostructures, Second Ed., Cambridge University Press, Cambridge, (2009).

Google Scholar