[1]
R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva Filho, J. -C. Brdas, L. L. Miller, K. R. Mann and C. D. Frisbie, Organic Thin Film Transistors Based on N-Alkyl Perylene Diimides: Charge Transport Kinetics as a Function of Gate Voltage and Temperature, J. Phys. Chem. B, 108 (2004).
DOI: 10.1021/jp046246y
Google Scholar
[2]
F. Würthner, Chemical Communications, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, 14 (2004), 1564-1579.
DOI: 10.1039/b401630k
Google Scholar
[3]
T. N. Krauss, E. Barrena, D. G. de Oteyza, X. N. Zhang, J. Major, V. Dehm, F. Würthner and H. Dosch, X-ray/Atomic Force Microscopy Study of the Temperature-Dependent Multilayer Structure of PTCDI-C8 Films on SiO2, J. Phys. Chem. C, 113 (2009).
DOI: 10.1021/jp808037w
Google Scholar
[4]
P. Peumans, V. Bulović, S.R. Forrest, Efficient high-bandwidth organic multilayer photodetectors, Appl. Phys. Lett., 76 (2000), 3855-3857.
DOI: 10.1063/1.126800
Google Scholar
[5]
Y.G. Kozlov, G. Parthasarathy, P.E. Burrows, S.R. Forrest, Y. You, M.E. Thompson, Optically pumped blue organic semiconductor lasers, Appl. Phys. Lett. 72 (1998), 144-146.
DOI: 10.1063/1.120669
Google Scholar
[6]
P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/ C 60 photovoltaic Cells, Appl. Phys. Lett. 79 (2001), 126-128.
DOI: 10.1063/1.1384001
Google Scholar
[7]
F.S. Tautz, Structure and bonding of large aromatic molecules on noble metal surfaces: The example of PTCDA, Prog. Surf. Sci. 82 (2007) 479-520.
DOI: 10.1016/j.progsurf.2007.09.001
Google Scholar
[8]
Y. Hirose, S.R. Forrest, A. Kahn, Quasiepitaxial growth of the organic molecular semiconductor 3, 4, 9, 10-perylenetetracarboxylic dianhydride, Phys. Rev. B, 52 (1995), 14040-14047.
DOI: 10.1103/physrevb.52.14040
Google Scholar
[9]
A. Hoshino, S. Isoda, H. Kurata, T. Kobayashi, Scanning tunneling microscope contrast of perylene‐3, 4, 9, 10‐tetracarboxylic‐dianhydride on graphite and its application to the study of epitaxy, J. Appl. Phys. 76 (1994), 4113-4120.
DOI: 10.1063/1.357361
Google Scholar
[10]
E. Umbach, K. Glöcker, M. Sokolowski, Surface architecture, with large organic molecules: interface order and epitaxy, Surf. Sci. 20 (1998), 402-404.
DOI: 10.1016/s0039-6028(98)00014-4
Google Scholar
[11]
S. Mannsfeld, M. Törker, T. Schmitz-Hübsch, F. Sellam, T. Fritz, K. Leo, Combined LEED and STM study of PTCDA growth on reconstructed Au(111) and Au(100) single crystals , Org. Electron. 2 (2001) 121-134.
DOI: 10.1016/s1566-1199(01)00018-0
Google Scholar
[12]
Hong Li, Paul Winget, and Jean-Luc Bredas, Transparent Conducting Oxides of Relevance to Organic Electronics: Electronic Structures of Their Interfaces with Organic Layers, Chem. of Mat., 26 (2014), 631-646.
DOI: 10.1021/cm402113k
Google Scholar
[13]
T. Hino, H. Tanaka, T. Hasegawa, M. Aono and T. Ogawa, Photoassisted Formation of an.
Google Scholar
[14]
T. Hino, T. Hasegawa, H. Tanaka, T. Tsuruoka, T. Ogawa, M. Aono, Influence of Atmosphere on Photo-Assisted Atomic Switch Operations, Key Engineering Materials, 596 (2014), 116-120.
DOI: 10.4028/www.scientific.net/kem.596.116
Google Scholar
[15]
Arramel, T. Hasegawa, T. Tsuruoka, M. Aono, in preparation (2014).
Google Scholar
[16]
C. C. Wu, C. I. Wu, J. C. Sturm and A. Kahn, Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices, Appl. Phys. Lett., 70 (1997).
DOI: 10.1063/1.118575
Google Scholar
[17]
Y. H. Liau, N. F. Scherer and K. Rhodes, Nanoscale Electrical Conductivity and Surface Spectroscopic Studies of Indium-Tin Oxide, J. Phys. Chem. B, 105 (2001), 3282-3288.
DOI: 10.1021/jp0040749
Google Scholar
[18]
P.I. Djurovich, E.I. Mayo, S.R. Forrest, and M.E. Thompson, Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors, Org. Elec., 10 (2009), 515-520.
DOI: 10.1016/j.orgel.2008.12.011
Google Scholar
[19]
H.M. Zhang, J.B. Gustafsson, L.S.O. Johansson, STM study of the electronic structure of PTCDA on Ag/Si(111)- sqrt 3 x sqrt3, Chem. Phys. Lett., 485 (2010), 69-76.
Google Scholar
[20]
Q. H. Wang and M. C. Hersam, Nanofabrication of Heteromolecular Organic Nanostructures on Epitaxial Graphene via Room Temperature Feedback-Controlled Lithography, Nano Lett., 11 (2010), 589-593.
DOI: 10.1021/nl103590j
Google Scholar
[21]
J.D. Emery, Q.H. Wang, M. Zarrouati, P. Fenter, M.C. Hersam M.J. Bedzyk, Structural analysis of PTCDA monolayers on epitaxial graphene with ultra-high vacuum scanning tunneling microscopy and high-resolution X-ray reflectivity , Surf. Sci. 605 (2011).
DOI: 10.1016/j.susc.2010.11.008
Google Scholar
[22]
D. R.T. Zahn, G. N. Gavrila, M. Gorgoi, The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission, Chem. Phys. 325 (2006), 99-112.
DOI: 10.1016/j.chemphys.2006.02.003
Google Scholar