Covalent Functionalization of Graphene Flakes with Well-Defined Azido-Terminated Poly(ԑ-caprolactone) and Poly(2-oxazoline)

Article Preview

Abstract:

We report on grafting-on method to covalently functionalize exfoliated graphene flakes (GFs) synthesized via ultrasonication of graphite nanoplatelets (GNPs) in N-methylpyrrolidone (NMP). A well-defined poly(ε-caprolactone) (PCL) and poly(2-isopropyl-2-oxazoline) (PIPOZ) with terminal azido group were prepared. The reactions between the azido-terminated PCL or PIPOZ and ultrasonication-assisted exfoliated GFs were carried out through nitrene chemistry to obtain PCL-grafted-GFs (PCL-g-GFs) and PIPOZ-grafted-GFs (PIPOZ-g-GFs). Infrared (IR), thermogravimetry analysis (TGA) and transmission electron microscope (TEM) measurements confirmed the structure of polymer grafted GFs. The results suggested that functionalization might be an effective approach to overcome the restacking issue of graphene. Further, the presence of polymer chains onto GFs provides solubility in a wide variety of organic solvents. This type of material may open up a new opportunity for the synthesis of graphene-based materials and fabrications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-97

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. S. Novoselov, and A. K. Geim, The rise of graphene, Nature Materials 6 (2007) 183 – 191.

Google Scholar

[2] V. Singh, D. Jung , L. Zhai , S. Das, and S. I. Khondaker , S. Seal, Graphene Based Materials: Past, Present and Future, Prog. Mater Sci. 56 (2011) 1178–1271.

DOI: 10.1016/j.pmatsci.2011.03.003

Google Scholar

[3] H. Xu, and K. S. Suslick, Sonochemical Preparation of Functionalized Graphenes, J. Am. Chem. Soc. 133 (2011) 9148–9151.

DOI: 10.1021/ja200883z

Google Scholar

[4] S.G. An, and C.G. Cho, Synthesis and Characterization of Amphiphilic Poly(ε-caprolactone) Star Block Copolymers, Macromol. Rapid Commun. 25 (2004) 618-622.

DOI: 10.1002/marc.200300118

Google Scholar

[5] L. Hua, W. Kai, and Y. Inoue, Synthesis and Characterization of Poly(ε-caprolactone)-Graphite Oxide Composites, J. Appl. Polym. Sci. 106 (2007) 1880-1884.

DOI: 10.1002/app.26503

Google Scholar

[6] T. X. Viegas, M. D. Bentley,J. M. Harris, Z. Fang, K. Yoon, B. Dizman, R. Weimer, A. Mero, G. Pasut, and F.M. Veronese, Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery Bioconjugate Chem. 22 (2011) 976–986.

DOI: 10.1021/bc200049d

Google Scholar

[7] M. Hruby, S.K. Filippov, J. Panek, M. Novakova, H. Mackova, J. Kucka, D. Vetvicka, and K. Ulbrich, Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems, Macromol. Biosci. 10 (2010) 916–924.

DOI: 10.1002/mabi.201000034

Google Scholar

[8] P.X. Thinh, C. Basavaraja, J.K. Kim, and D.S. Huh, Characterization and Electrical Properties of Honeycomb-Patterned Poly(ε-caprolactone)/Reduced Graphene Oxide Composite Film, Polym. Compos. 33 (2012) 2159-2168.

DOI: 10.1002/pc.22357

Google Scholar

[9] K. Makiguchi, T. Satoh, and T. Kakuchi, Diphenyl Phosphate as an Efficient Cationic Organocatalyst for Controlled/Living Ring-Opening Polymerization of δ-Valerolactone and ε-Caprolactone, Macromolecules 44 (2011) 1999-(2005).

DOI: 10.1021/ma200043x

Google Scholar

[10] G. `le Volet, V Chanthavong, V. Wintgens, and Catherine Amiel, Synthesis of Monoalkyl End-Capped Poly(2-methyl-2-oxazoline) and Its Micelle Formation in Aqueous Solution, Macromolecules 38 (2005) 5190-5197.

DOI: 10.1021/ma050407u

Google Scholar

[11] G. `le Volet, T.X. Lav, J. Babinot, and C. Amiel, Click-Chemistry: An Alternative Way to Functionalize Poly(2-methyl-2-oxazoline), Macromol. Chem. Phys. 212 (2011) 118–124.

DOI: 10.1002/macp.201000556

Google Scholar

[12] J. Park, and M. Yan, Covalent Functionalization of Graphene with Reactive Intermediates, Acc. Chem. Res. 46 (2013) 181–189.

DOI: 10.1021/ar300172h

Google Scholar