Electron Tunneling Current in an n-p-n Bipolar Transistor Based on Armchair Graphene Nanoribbon by Using Airy-Wavefunction Approach

Article Preview

Abstract:

We have developed a model of the tunneling current in n-p-n bipolar transistor based on armchair graphene nanoribbon (AGNR). Airy-wavefunction approach is employed to obtain electron transmittance, and the obtained transmittance is then used to obtain the tunneling current. The tunneling current is calculated for various variables such as base-emitter voltage, base-current voltage, and AGNR width. It is found that the tunneling current increases with increasing the base-emitter voltage or the base-collector voltage. This result is due to the lowered barrier height of the base region caused by the increase in the base-emitter voltage or the base-collector voltage. In addition, the tunneling current density increases with the width for narrow AGNR and, on the other hand, it decreases for wide AGNR. This finding might be due to the contributions of the band gap energy and the electron effective mass of AGNR which are inversely proportional to the AGNR width.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-84

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science. 306 (2004) 666.

DOI: 10.1126/science.1102896

Google Scholar

[2] Q. Zhang, T. Fang, H. Xing, A. Seabaugh and D. Jena, IEEE Electron Device Lett. Vol. 29 (2008) 1344.

DOI: 10.1109/led.2008.2005650

Google Scholar

[3] D. Jena, T. Fang, Q. Zhang and H. Xing, Appl. Phys. Lett. 93 (2008) 112106.

Google Scholar

[4] N. M. R. Peres, A. H. Castro Neto and F. Guinea, Phys. Rev. B. 73 (2006) 195411.

Google Scholar

[5] L. Brey and H. A. Fertig, Phys. Rev. B. 73 (2006) 235411.

Google Scholar

[6] Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett. 97 (2006) 216803.

Google Scholar

[7] J. Fernandez-Rossier, J. J. Palacios and L. Brey, Phys. Rev. B. 75 (2007) 205441.

Google Scholar

[8] D. Jimenez, Nanotechnology . 19 (2008) 345204.

Google Scholar

[9] J. Knoch and J. Appenzeller: Phys. Stat. Sol. (a). 205 (2008) 679.

Google Scholar

[10] D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., Pearson Education International, (2005)75.

Google Scholar

[11] Khairurrijal, S. Miyazaki and M. Hirose, J. Vac. Sci. Technol. B. 17 (1999) 306.

Google Scholar

[12] F. A. Noor, M. Abdullah, Sukirno and Khairurrijal, J. Semicond. 31 (2010) 13402.

Google Scholar

[13] C. Neto, F. Guinea, R. Peres, S Novoselov and K. Geim, Rev. Mod. Phys. 81 (2009) 109.

Google Scholar

[14] L. Hasanah, M. Abdullah, Sukirno, T. Winata and Khairurrijal, Semicond. Sci. Technol. 23 (2008) 125024.

Google Scholar

[15] S. M. Sze, Semiconductor Devices, Physics and Technology, Wiley, New York (2005) 111.

Google Scholar