Computational Density Functional Theory Study of Hydrazine Adsorption on Ni(110) Surface

Article Preview

Abstract:

Hydrazine adsorption on Ni(110) surface is studied using density functional theory. Adsorption of hydrazine in its critical conformations (anti, cis, and gauche) on both 0.25 ML and 0.11 ML coverages are investigated. The results reveal that on both coverage, gauche conformations are adsorbed as the most stable conformation. The stable conformation tends to shift to cis as the coverage is reduced. Density of states analysis suggests that dz2-band of Ni and pz orbital of hydrazine are responsible for bonding formation between two constituents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

217-220

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi, & T. Kobayashi, A Platinum‐Free Zero‐Carbon‐Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles, Angew Chem, 119(42) (2007) 8170-8173.

DOI: 10.1002/ange.200701334

Google Scholar

[2] S-H. Wu and D-H. Chen, Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol, J. Colloid Interface Sci. 259(2) (2003) 282-286.

DOI: 10.1016/s0021-9797(02)00135-2

Google Scholar

[3] M. Kemal Agusta, M. David , H. Nakanishi , and H. Kasai, Hydrazine (N 2 H 4) adsorption on Ni (100)–Density functional theory investigation, Surface Science. 604(3) (2010) 245-251.

DOI: 10.1016/j.susc.2009.11.012

Google Scholar

[4] M.K. Agusta and H. Kasai, First principles investigations of hydrazine adsorption conformations on Ni (111) surface, Surface Science 606 (7) (2012) 766-771.

DOI: 10.1016/j.susc.2012.01.009

Google Scholar

[5] M. K. Agusta and H. Kasai, A First Principles Study on Zinc–Porphyrin Interaction with O2 in Zinc–Porphyrin (Oxygen) Complex, J. Phys. Soc. Jpn. 81 (12) (2012).

DOI: 10.1143/jpsj.81.124301

Google Scholar

[6] Vojislava Pophristic and Lionel Goodman, Hyperconjugation not steric repulsion leads to the staggered structure of ethane, Nature. 411(6837) (2001) 565-568.

DOI: 10.1038/35079036

Google Scholar

[7] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys rev. 136. 3B (1964): B864-B871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[8] W. Kohn and L. Jeu Sham, Self-consistent equations including exchange and correlation effects, Phys Rev. 140. 4A (1965): A1133.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[9] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys Rev Letters. 77(18) (1996): 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[10] H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, J. Phys Rev B. 13(12) (1976): 5188.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[11] P. Giannozzi, et. al., Quantum Espresso: A modular and open-source software project for quantum simulations of materials J. Phys: Condens. Matter, 21(39) (2009). 395502.

Google Scholar

[12] A. Kokalj, XCrySDen—a new program for displaying crystalline structures and electron densities, J. Mol. Graphics Modell. 17(3) (1999) 176-179.

DOI: 10.1016/s1093-3263(99)00028-5

Google Scholar