Preparation of Fe3O4/TiO2 and Fe3O4/TiO2/CuO Nanohybrids for Photoreduction of Cr(VI)

Article Preview

Abstract:

Fe3O4/TiO2 and CuO incorporated in Fe3O4/TiO2 nanohybrid were successfully synthesized using sol-gel method. X-ray diffraction, Field emission scanning electron microscope, Fourier-transform infrared absorption, diffuse reflectance UV-visible spectrophotometer and Vibrating sample magnetometer were employed to investigate the structural, morphology and composition, optical and magnetic properties of the as prepared sample. The photocatalytic activity of as-prepared nanohybrids photocatalyst was tested by the photocatalytic reduction of Cr(VI) in aqueous solution under UV and visible light irradiation. Compared with Fe3O4/TiO2, Fe3O4/TiO2/CuO had better photocatalytic reduction efficiency. Furthermore, the possible primary species involved in the photocatalytic reduction of Cr(VI) was studied by examination the photocatalytic activity in the presence of scavengers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-227

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Jin, Y. X. Zhang, F. L. Menga, Y. Jia, T. Luo, X. Y Yu, J. Wang, J. H. Liu, and X. J. Huang, Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol, J Hazard Mater. 276 (2014).

DOI: 10.1016/j.jhazmat.2014.05.059

Google Scholar

[2] K. Selvi, S. Pattabhi, and K. Kadirvelu, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresource Technol. 80 (2001) 87-89.

DOI: 10.1016/s0960-8524(01)00068-2

Google Scholar

[3] Y. Pang, G. M. Zeng, L. Tang, Y. Zhang, Y. Y. Liu, X. X. Lei, Z. Li, J. C. Zhang, Z. F. Liu, and Y. Q. Xiong, Preparation and application of stability enhanced magnetic nanoparticles for rapid removal of Cr(VI), Chem. Eng. J. 175 (2011) 222-227.

DOI: 10.1016/j.cej.2011.09.098

Google Scholar

[4] N. S. Gómez, M.G. M. Miranda, and M.T. Olguín, Chromium VI adsorption from sodium chromate and potassium dichromate aqueous systems by hexadecyltrimethylammonium-modified zeolite-rich tuff, Appl Clay Sci 95 (2014) 197–204.

DOI: 10.1016/j.clay.2014.04.013

Google Scholar

[5] Y. C. Zhanga, L. Yao, G. Zhang, D. D. Dionysiou, J. Li, X. Du, One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI), Appl. Catal B. 144 (2014).

DOI: 10.1016/j.apcatb.2013.08.006

Google Scholar

[6] S. H. Wu, J. L. Wu, S. Y. Jia, Q. W. Chang, H. T. Ren, Y. Liu, Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures: Fabrication and enhanced photocatalytic properties, Appl Surf Sci. 287 (2013) 389– 396.

DOI: 10.1016/j.apsusc.2013.09.164

Google Scholar

[7] Y. F. Zhang, L. G. Qiu, Y. P. Yuan, Y. J. Zhu, X. Jiang, J. D. Xiao, Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light, Appl. Catal B. 144 (2014).

DOI: 10.1016/j.apcatb.2013.08.019

Google Scholar

[8] C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, and P. Vinayagamoorthy, Fe3O4/SnO2 nanocomposite: Hydrothermal and sonochemical synthesis, characterization, and visible-light photocatalytic and bactericidal activities, Powder Technol. 246 (2013).

DOI: 10.1016/j.powtec.2013.06.011

Google Scholar

[9] S. Shylesh, V. Schunemann, and W.R. Thiel, Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis, A. Chemie International Edition. 49 (2010) 3428–3459.

DOI: 10.1002/anie.200905684

Google Scholar

[10] S. Shaker, S. Zafarian, C. H. S. Chakra, and K. V. Rao, Preparation and charaterization of magnetite nanoparticles by sol-gel method for water treatment, international journal of innovative research in science, engineering and technology, IJIRSET 2 (2013).

Google Scholar

[11] Y. Aparna, K. V. E. Rao, and P. Srinivasa, Synthesis and Characterization of CuO Nano Particles by Novel Sol-Gel Method, IPCBEE 48,. (2012) 156-160.

Google Scholar

[12] M. Sorescu, T. Xu, A. Wise, M. D. Michelena, M. E. McHenry Studies onStructural, Magneticand Thermal Propertiesof xFe2TiO4-(1-x)Fe3O4(0≤x≤1) Pseudo-binarySystem, J. Magn. Magn. Mater. 324 (2012) 1453-1462.

DOI: 10.1016/j.jmmm.2011.12.012

Google Scholar

[13] J. Zhang, L. Qian, L. Yang, X. Tao, K. Su, H. Wang, Nanoscale anatase TiO2 with dominant {1 1 1} facets shows high photocatalytic activity, Appl Surf Sci. 311 (2014) 521-528.

DOI: 10.1016/j.apsusc.2014.05.103

Google Scholar

[14] T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties, Appl Surf Sci. 311 (2013) 602-608.

DOI: 10.1016/j.apsusc.2014.05.116

Google Scholar

[15] H. Yan, J. Zhang, C. You, Z. Song, B. Yu, Y. Shen, Influences of different synthesis conditions on properties of Fe3O4 nanoparticles, Mater Chem Phys. 113 (2009) 46-52.

DOI: 10.1016/j.matchemphys.2008.06.036

Google Scholar

[16] R. G. Freitas, M. A. Santanna, E. C. Pereira, Preparation and Characterization of TiO 2 Nanotube Arrays in Ionic Liquid for Water Splitting, Electrochim. Acta. 136 (2014) 404-411.

DOI: 10.1016/j.electacta.2014.05.097

Google Scholar

[17] D. Li, J. Hu, R. Wu, J. G. Lu, Conductometric chemical sensor based on individual CuO nanowires, Nanotechnology 21 (2010) 485-502.

DOI: 10.1088/0957-4484/21/48/485502

Google Scholar

[18] A, Hasanpour, M. Niyaifar, H. Mohammadpour and J. Amighian, A novel non-thermal process of TiO2-shell coating on Fe3O4-core nanoparticles J. Phys. Chem. Solids. 73 (2012) 1066-1070.

DOI: 10.1016/j.jpcs.2012.04.003

Google Scholar

[19] N. M. Basith, J. Judith Vijaya, L. John Kennedy, and M. Bououdina, Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method, Mat Sci Semicon Proc. 17 (2014).

DOI: 10.1016/j.mssp.2013.09.013

Google Scholar

[20] N. Yeh, Y. C. Lee, C. Y. Chang, T. C. Cheng, Anti-fish bacterial pathogen effect of visible light responsive Fe3O4@TiO2 nanoparticles immobilized on glass using TiO2 sol–gel, Thin Solid Films 549 (2013) 93-97.

DOI: 10.1016/j.tsf.2013.09.092

Google Scholar

[21] S. S. Lee, H. Bai, Z. Liu, and D. D. Sun, Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater, Water Research 47 (2013) 4059-4073.

DOI: 10.1016/j.watres.2012.12.044

Google Scholar

[22] B. Hapke, Theory of Reflectance and Emittance Spectroscopy, University Press, Cambridge, (1993).

Google Scholar