[1]
Z. Jin, Y. X. Zhang, F. L. Menga, Y. Jia, T. Luo, X. Y Yu, J. Wang, J. H. Liu, and X. J. Huang, Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol, J Hazard Mater. 276 (2014).
DOI: 10.1016/j.jhazmat.2014.05.059
Google Scholar
[2]
K. Selvi, S. Pattabhi, and K. Kadirvelu, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresource Technol. 80 (2001) 87-89.
DOI: 10.1016/s0960-8524(01)00068-2
Google Scholar
[3]
Y. Pang, G. M. Zeng, L. Tang, Y. Zhang, Y. Y. Liu, X. X. Lei, Z. Li, J. C. Zhang, Z. F. Liu, and Y. Q. Xiong, Preparation and application of stability enhanced magnetic nanoparticles for rapid removal of Cr(VI), Chem. Eng. J. 175 (2011) 222-227.
DOI: 10.1016/j.cej.2011.09.098
Google Scholar
[4]
N. S. Gómez, M.G. M. Miranda, and M.T. Olguín, Chromium VI adsorption from sodium chromate and potassium dichromate aqueous systems by hexadecyltrimethylammonium-modified zeolite-rich tuff, Appl Clay Sci 95 (2014) 197–204.
DOI: 10.1016/j.clay.2014.04.013
Google Scholar
[5]
Y. C. Zhanga, L. Yao, G. Zhang, D. D. Dionysiou, J. Li, X. Du, One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI), Appl. Catal B. 144 (2014).
DOI: 10.1016/j.apcatb.2013.08.006
Google Scholar
[6]
S. H. Wu, J. L. Wu, S. Y. Jia, Q. W. Chang, H. T. Ren, Y. Liu, Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures: Fabrication and enhanced photocatalytic properties, Appl Surf Sci. 287 (2013) 389– 396.
DOI: 10.1016/j.apsusc.2013.09.164
Google Scholar
[7]
Y. F. Zhang, L. G. Qiu, Y. P. Yuan, Y. J. Zhu, X. Jiang, J. D. Xiao, Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light, Appl. Catal B. 144 (2014).
DOI: 10.1016/j.apcatb.2013.08.019
Google Scholar
[8]
C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, and P. Vinayagamoorthy, Fe3O4/SnO2 nanocomposite: Hydrothermal and sonochemical synthesis, characterization, and visible-light photocatalytic and bactericidal activities, Powder Technol. 246 (2013).
DOI: 10.1016/j.powtec.2013.06.011
Google Scholar
[9]
S. Shylesh, V. Schunemann, and W.R. Thiel, Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis, A. Chemie International Edition. 49 (2010) 3428–3459.
DOI: 10.1002/anie.200905684
Google Scholar
[10]
S. Shaker, S. Zafarian, C. H. S. Chakra, and K. V. Rao, Preparation and charaterization of magnetite nanoparticles by sol-gel method for water treatment, international journal of innovative research in science, engineering and technology, IJIRSET 2 (2013).
Google Scholar
[11]
Y. Aparna, K. V. E. Rao, and P. Srinivasa, Synthesis and Characterization of CuO Nano Particles by Novel Sol-Gel Method, IPCBEE 48,. (2012) 156-160.
Google Scholar
[12]
M. Sorescu, T. Xu, A. Wise, M. D. Michelena, M. E. McHenry Studies onStructural, Magneticand Thermal Propertiesof xFe2TiO4-(1-x)Fe3O4(0≤x≤1) Pseudo-binarySystem, J. Magn. Magn. Mater. 324 (2012) 1453-1462.
DOI: 10.1016/j.jmmm.2011.12.012
Google Scholar
[13]
J. Zhang, L. Qian, L. Yang, X. Tao, K. Su, H. Wang, Nanoscale anatase TiO2 with dominant {1 1 1} facets shows high photocatalytic activity, Appl Surf Sci. 311 (2014) 521-528.
DOI: 10.1016/j.apsusc.2014.05.103
Google Scholar
[14]
T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties, Appl Surf Sci. 311 (2013) 602-608.
DOI: 10.1016/j.apsusc.2014.05.116
Google Scholar
[15]
H. Yan, J. Zhang, C. You, Z. Song, B. Yu, Y. Shen, Influences of different synthesis conditions on properties of Fe3O4 nanoparticles, Mater Chem Phys. 113 (2009) 46-52.
DOI: 10.1016/j.matchemphys.2008.06.036
Google Scholar
[16]
R. G. Freitas, M. A. Santanna, E. C. Pereira, Preparation and Characterization of TiO 2 Nanotube Arrays in Ionic Liquid for Water Splitting, Electrochim. Acta. 136 (2014) 404-411.
DOI: 10.1016/j.electacta.2014.05.097
Google Scholar
[17]
D. Li, J. Hu, R. Wu, J. G. Lu, Conductometric chemical sensor based on individual CuO nanowires, Nanotechnology 21 (2010) 485-502.
DOI: 10.1088/0957-4484/21/48/485502
Google Scholar
[18]
A, Hasanpour, M. Niyaifar, H. Mohammadpour and J. Amighian, A novel non-thermal process of TiO2-shell coating on Fe3O4-core nanoparticles J. Phys. Chem. Solids. 73 (2012) 1066-1070.
DOI: 10.1016/j.jpcs.2012.04.003
Google Scholar
[19]
N. M. Basith, J. Judith Vijaya, L. John Kennedy, and M. Bououdina, Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method, Mat Sci Semicon Proc. 17 (2014).
DOI: 10.1016/j.mssp.2013.09.013
Google Scholar
[20]
N. Yeh, Y. C. Lee, C. Y. Chang, T. C. Cheng, Anti-fish bacterial pathogen effect of visible light responsive Fe3O4@TiO2 nanoparticles immobilized on glass using TiO2 sol–gel, Thin Solid Films 549 (2013) 93-97.
DOI: 10.1016/j.tsf.2013.09.092
Google Scholar
[21]
S. S. Lee, H. Bai, Z. Liu, and D. D. Sun, Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater, Water Research 47 (2013) 4059-4073.
DOI: 10.1016/j.watres.2012.12.044
Google Scholar
[22]
B. Hapke, Theory of Reflectance and Emittance Spectroscopy, University Press, Cambridge, (1993).
Google Scholar