[1]
M. Asadullah, Technical Challenges of Utilizing Biomass Gasification Gas for Power Generation: An Overview, International Conference on Energy, Environment and Sustainable Economy (EESE 2013), J. Energ. Technol. Policy, (2013).
Google Scholar
[2]
M. Asadullah, Barriers of commercial power generation using biomass gasification gas: A review, Renew. Sust. Energ. Rev. 29 (2014) 201-215.
DOI: 10.1016/j.rser.2013.08.074
Google Scholar
[3]
N. Hanina, M. Asadullah, Gasification of Oil Palm Biomass to Produce Syngas for Electricity Generation – Cost Benefit Analysis, Spring World Congress on Engineering and Technology (SCET2014), Adv. Mater. Res., 2014, pp.148-152.
DOI: 10.4028/www.scientific.net/amr.906.148
Google Scholar
[4]
M. Asadullah, M. Asaduzzaman, M.S. Kabir, M.G. Mostofa, T. Miyazawa, Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution, J. Hazard. Mater. 174 (2010) 437-443.
DOI: 10.1016/j.jhazmat.2009.09.072
Google Scholar
[5]
Y. -K. Kim, L. -f. Hao, J. -I. Park, J. Miyawaki, I. Mochida, S. -H. Yoon, Catalytic activity and activation mechanism of potassium carbonate supported on perovskite oxide for coal char combustion, Fuel 94 (2012) 516-522.
DOI: 10.1016/j.fuel.2011.10.017
Google Scholar
[6]
L. Dong, M. Asadullah, S. Zhang, X. -S. Wang, H. Wu, C. -Z. Li, An advanced biomass gasification technology with integrated catalytic hot gas cleaning: Part I. Technology and initial experimental results in a lab-scale facility, Fuel 108 (2013).
DOI: 10.1016/j.fuel.2012.11.043
Google Scholar
[7]
S. Zhang, Z. Min, H. -L. Tay, M. Asadullah, C. -Z. Li, Effects of volatile–char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam, Fuel 90 (2011) 1529-1535.
DOI: 10.1016/j.fuel.2010.11.010
Google Scholar
[8]
Z. Min, P. Yimsiri, M. Asadullah, S. Zhang, C. -Z. Li, Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming, Fuel 90 (2011) 2545-2552.
DOI: 10.1016/j.fuel.2011.03.027
Google Scholar
[9]
M. Asadullah, S. Zhang, Z. Min, P. Yimsiri, C. -Z. Li, Effects of biomass char structure on its gasification reactivity, Bioresour. Technol. 101 (2010) 7935-7943.
DOI: 10.1016/j.biortech.2010.05.048
Google Scholar
[10]
Y. Wang, X. Hu, Y. Song, Z. Min, D. Mourant, T. Li, R. Gunawan, C. -Z. Li, Catalytic steam reforming of cellulose-derived compounds using a char-supported iron catalyst, Fuel Proc. Technol. 116 (2013) 234-240.
DOI: 10.1016/j.fuproc.2013.07.014
Google Scholar
[11]
Z. Min, S. Zhang, P. Yimsiri, Y. Wang, M. Asadullah, C. -Z. Li, Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming, Fuel 106 (2013) 858-863.
DOI: 10.1016/j.fuel.2012.11.063
Google Scholar
[12]
Z. Min, J. -Y. Lin, P. Yimsiri, M. Asadullah, C. -Z. Li, Catalytic reforming of tar during gasification. Part V. Decomposition of NOx precursors on the char-supported iron catalyst, Fuel 116 (2014) 19-24.
DOI: 10.1016/j.fuel.2013.07.080
Google Scholar
[13]
S. Zhang, M. Asadullah, L. Dong, H. -L. Tay, C. -Z. Li, An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support, Fuel 112 (2013) 646-653.
DOI: 10.1016/j.fuel.2013.03.015
Google Scholar
[14]
S. Janbroers, J.N. Louwen, H.W. Zandbergen, P.J. Kooyman, Insights into the nature of iron-based Fischers Tropsch catalysts from quasi in situ TEM-EELS and XRD, Catal. (2009) 235–242.
DOI: 10.1016/j.jcat.2009.09.021
Google Scholar
[15]
A. Hisanori, M. Yasuyuki, S. Yoshie, A comparative study on hydrogenation of carbon dioxide and carbon monoxide over iron catalyst, Mol. Catal. A: Chem. 154 (2000) 23.
Google Scholar