[1]
M. Vanaja, S. Rajeshkumar, K. Paulkumar, G. Gnanajobitha, C. Malarkodi, and G. Annadurai*, Kinetic study on green synthesis of silver nanoparticles using coleus aromaticus leaf extract, Advanced in Applied Science Research vol. 4, pp.50-55, (2013).
DOI: 10.1155/2013/317963
Google Scholar
[2]
E. Elumalai, T.N.V.K.V. Prasad, V. Kambala, P.C. Nagajyothi, and E. David, Green synthesis of silver nanoparticle using Euphorbia hirta L and their antifungal activities, Archives of Applied Science Research, vol. 2, pp.76-81, (2010).
Google Scholar
[3]
C. Panneerselvam, S. Ponarulselvam, and K. Murugan, Potential Anti-plasmodial Activity of Synthesized Silver nanoparticles using Andrographis paniculata Nees (Acanthaceae), Archives of Applied Science Research, vol. 3, pp.208-217, (2011).
Google Scholar
[4]
U. Kreibig and M. Vollmer, Materials Mix. Optical properties of metal clusters, Springer: Berlin, vol. 25, p.532, (1995).
Google Scholar
[5]
T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, and M. Srinivasan, Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries, Journal of Power Sources, vol. 195, pp.4350-4355, (2010).
DOI: 10.1016/j.jpowsour.2009.12.137
Google Scholar
[6]
R. W. -Y. Sun, R. Chen, N. P. -Y. Chung, C. -M. Ho, C. -L. S. Lin, and C. -M. Che, Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells , Chem. Commun, p.5059, (2005).
DOI: 10.1039/b510984a
Google Scholar
[7]
A. Kumar, P. K. Vemula, P. M. Ajayan, and G. John, Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil, Nat Mater, vol. 7, pp.236-41, Mar (2008).
DOI: 10.1038/nmat2099
Google Scholar
[8]
R. A. Khaydarov, R. R. Khaydarov, O. Gapurova, Y. Estrin, and T. Scheper, Electrochemical method for the synthesis of silver nanoparticles, Journal of Nanoparticle Research, vol. 11, pp.1193-1200, (2008).
DOI: 10.1007/s11051-008-9513-x
Google Scholar
[9]
C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, et al., Chemical sensing and imaging with metallic nanorods, Chem Commun (Camb), pp.544-57, Feb 7 (2008).
DOI: 10.1039/b711069c
Google Scholar
[10]
L. Christensen, S. Vivekanandhan, M. Misra, and A. K. Mohanty, Biosynthesis of silver nanoparticles using murraya koenigii (curry leaf): An investigation od the effect of broth concentration inreduction mechanism and particles size , ADVANCED MATERIALS vol. 2, pp.429-434, (2011).
DOI: 10.5185/amlett.2011.4256
Google Scholar
[11]
Sumit.S. Lal and P.L. Nayak, Green synthesis of gold nanoparticles using various extract of plants and spices, Review Journal For Science vol. 2, pp.325-350, (2012).
Google Scholar
[12]
N. A. Arham, N. A. N. Mohamad, J. Jai, J. Krishnan, and N. M. Yusof, Application of Response Surface Methodology in Extraction of Bioactive Component from Palm Leaves (Elaeis guineensis), vol. 5, (2013).
DOI: 10.12777/ijse.5.2.95-100
Google Scholar
[13]
D. Philip, Spectrochimica Acta Part A, vol. 78, p.327–331, (2011).
Google Scholar
[14]
M. Vanaja, G. Gnanajobitha, K. Paulkumar, S. Rajeshkumar, C. Malarkodi, and G. Annadurai, Phytosynthesis of silver nanoparticles by cissus quadrangularis influence of physicochemical factors, Nanostructure in Chemistry, vol. 3, (2013).
DOI: 10.1186/2193-8865-3-17
Google Scholar