Self-Assembly of Peptide Amphiphiles: Molecularly Engineered Bionanomaterials

Article Preview

Abstract:

Molecular self-assembly is ubiquitous in nature and has now emerged as a new approach in chemical synthesis, engineering, nanotechnology, polymer science, and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in the recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use of peptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. Today, the study of biological self-assembly systems represent a significant advance in the molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries of existing disciplines. Many self-assembling systems are range from bi-and tri-block copolymers to complex DNA structures as well as simple and complex proteins and peptides. The attractiveness of such bottom-up processes lies in their capability to build uniform, functional units or arrays and the possibility to exploit such structures at meso-and macroscopic scale for life and non-life science applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

586-593

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[2] Hong Y. S., Pritzker M. D., Legge R. L., Effect of NaCl and Peptide Concentration on the Self-Assembly of an Ionic-Complementary Peptide EAK16-II, Colloids and Surfaces B: Biointerfaces, 46, 152-161, (2005).

DOI: 10.1016/j.colsurfb.2005.11.004

Google Scholar

[3] Davies R. P. W., Beevers A. A., Boden N., Carrick L. M., Fishwick C. W. G., McLeish T. C. B., Nyrkova I., Semenov A. N., Self-Assembling β-Sheet Tape Forming Peptides, Supramolecular Chemistry, 18(5), 435-443, (2006).

DOI: 10.1080/10610270600665855

Google Scholar

[4] Hwang W., Marini D. M., Kamm R. D., Zhang S. G., Supramolecular Structure of Helical Ribbons Self-Assembled From A β-Sheet Peptide, Journal of Chemical Physics, 118(1), 389-397, (2003).

DOI: 10.1063/1.1524618

Google Scholar

[5] S. G. Zhang, Building From the Bottom Up, Materials Today, (2003).

Google Scholar

[6] Tan H. L., The Art of Molecular Self-Assembly, The Chemical Engineer (IChemE), 849, 48-51, (2012).

Google Scholar

[7] S. Zhang, T. Holmes, C. Lockshin, and a Rich, Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane., Proc. Natl. Acad. Sci. U. S. A., vol. 90, no. 8, p.3334–8, Apr. (1993).

DOI: 10.1073/pnas.90.8.3334

Google Scholar

[8] Caplan, M.R., Schwartzfarb, E.M., Zhang, S.G., Kamm, R.D., Lauffenburger, D.A. Control of Self-Assembling Oligopeptide Matrix Formation through systematic variation of Amino Acid Sequence. Biomaterials 23 (1), 219-227.

DOI: 10.1016/s0142-9612(01)00099-0

Google Scholar

[9] A. Aggeli, I. a Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. McLeish, a N. Semenov, and N. Boden, Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers., Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 21, p.11857–62, Oct. (2001).

DOI: 10.1073/pnas.191250198

Google Scholar

[10] M. R. Caplan, P. N. Moore, S. Zhang, R. D. Kamm, and D. a Lauffenburger, Self-assembly of a beta-sheet protein governed by relief of electrostatic repulsion relative to van der Waals attraction., Biomacromolecules, vol. 1, no. 4, p.627–31, Jan. (2000).

DOI: 10.1021/bm005586w

Google Scholar

[11] H. Yang, M. Pritzker, S. Y. Fung, Y. Sheng, W. Wang, and P. Chen, Anion effect on the nanostructure of a metal ion binding self-assembling peptide., Langmuir, vol. 22, no. 20, p.8553–62, Sep. (2006).

DOI: 10.1021/la061238p

Google Scholar

[12] D. Zou, Z. Tie, C. Lu, M. Qin, X. Lu, M. Wang, W. Wang, and P. Chen, Effects of hydrophobicity and anions on self-assembly of the peptide EMK16-II., Biopolymers, vol. 93, no. 4, p.318–29, Apr. (2010).

DOI: 10.1002/bip.21340

Google Scholar

[13] Z. Da-Wei, T. Zuo-Xiu, Q. Meng, L. Chun-Mei, and W. Wei, Effect of Phosphate on the Self-Assembly of Peptide EMK16-II, Chinese Phys. Lett., vol. 26, no. 8, p.088103, Aug. (2009).

DOI: 10.1088/0256-307x/26/8/088103

Google Scholar

[14] Y. Hong, M. D. Pritzker, R. L. Legge, and P. Chen, Effect of NaCl and peptide concentration on the self-assembly of an ionic-complementary peptide EAK16-II., Colloids Surf. B. Biointerfaces, vol. 46, no. 3, p.152–61, Dec. (2005).

DOI: 10.1016/j.colsurfb.2005.11.004

Google Scholar

[15] S. Jun, Y. Hong, H. Imamura, B. -Y. Ha, J. Bechhoefer, and P. Chen, Self-assembly of the ionic peptide EAK16: the effect of charge distributions on self-assembly., Biophys. J., vol. 87, no. 2, p.1249–59, Aug. (2004).

DOI: 10.1529/biophysj.103.038166

Google Scholar

[16] P. Sciences, S. Boothroyd, and A. Science, Peptide Self-assembly : Controlling Conformation and Mechanical Properties A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences Stephen Boothroyd, (2011).

Google Scholar

[17] Pochan, D.J., Schneidar J.P., Kreitsinger,J., Ozbas,B., Rajagopal,K., Haines,L., Thermally Reversible Hydrogels via intramolecular folding and consequent Self-assembly of de Novo Designed Peptide. Journal of the American Chemical Society 2003, 125, (39), 11802-11803.

DOI: 10.1021/ja0353154

Google Scholar

[18] Z. Yan, J. Wang, J. Zhang, M. Qin, and W. Wang, Structural selection of ionic-complementary peptides with electrostatic interactions, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 82, no. 3, (2010).

DOI: 10.1103/physreve.82.031917

Google Scholar

[19] M. Altman, P. Lee, A. Rich, and S. Zhang, Conformational behavior of ionic self-complementary peptides, p.1095–1105, (2000).

DOI: 10.1110/ps.9.6.1095

Google Scholar

[20] P. Chen, Self-assembly of ionic-complementary peptides: a physicochemical viewpoint, Colloids Surfaces A Physicochem. Eng. Asp., vol. 261, no. 1–3, p.3–24, Jul. (2005).

DOI: 10.1016/j.colsurfa.2004.12.048

Google Scholar

[21] Y. Sheng, W. Wang, and P. Chen, Interaction of an ionic complementary peptide with a hydrophobic graphite surface, Protein Sci., vol. 19, no. 9, p.1639–48, Oct. (2010).

DOI: 10.1002/pro.444

Google Scholar

[22] P. Arosio, M. Owczarz, H. Wu, A. Butté, and M. Morbidelli, End-to-end self-assembly of RADA 16-I nanofibrils in aqueous solutions., Biophys. J., vol. 102, no. 7, p.1617–26, Apr. (2012).

DOI: 10.1016/j.bpj.2012.03.012

Google Scholar

[23] G. Fichman and E. Gazit, Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications., Acta Biomater., vol. 10, no. 4, p.1671–82, Apr. (2014).

DOI: 10.1016/j.actbio.2013.08.013

Google Scholar

[24] Z. Luo, S. Wang, and S. Zhang, Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis., Biomaterials, vol. 32, no. 8, p.2013–20, Mar. (2011).

DOI: 10.1016/j.biomaterials.2010.11.049

Google Scholar

[25] T. Wang, X. Zhong, S. Wang, F. Lv, and X. Zhao, Molecular Mechanisms of RADA16-1 Peptide on Fast Stop Bleeding in Rat Models., Int. J. Mol. Sci., vol. 13, no. 11, p.15279–90, Jan. (2012).

DOI: 10.3390/ijms131115279

Google Scholar

[26] K. L. Niece, J. D. Hartgerink, J. J. J. M. Donners, and S. I. Stupp, Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction, J. Am. Chem. Soc., vol. 125, no. 24, p.7146–7147, (2003).

DOI: 10.1021/ja028215r

Google Scholar

[27] A. Mohammed, A. F. Miller, and A. Saiani, 3D Networks from Self-Assembling Ionic-Complementary Octa-Peptides, Macromol. Symp., vol. 251, no. 1, p.88–95, Apr. (2007).

DOI: 10.1002/masy.200750512

Google Scholar

[28] A. Saiani, A. Mohammed, H. Frielinghaus, R. Collins, N. Hodson, C. M. Kielty, M. J. Sherratt, and A. F. Miller, Self-assembly and gelation properties of [small alpha]-helix versus [small beta]-sheet forming peptides, Soft Matter, vol. 5, no. 1, p.193–202, (2009).

DOI: 10.1039/b811288f

Google Scholar

[29] Cole L. A., Review: New Discoveries on the Biology and Detection of Human Chorionic Gonadotropin, Reproductive Biology and Endocrinology, 7(8), (2009).

DOI: 10.1186/1477-7827-7-8

Google Scholar

[30] Wiradharma N, Ting Y. W., Yang Y. Y., Self-AssembledOligopeptide Nanostructures for Co-delivery of Drug and Gene with Synergistic Therapeutic Effect, Biomaterials, 30, 3100-2109, (2009).

DOI: 10.1016/j.biomaterials.2009.03.006

Google Scholar

[31] Branco M. C., Schneider J. P., Self-Assembling Materials for Therapeutic Delivery, Acta Biomaterilia 5, 817-831, (2009).

DOI: 10.1016/j.actbio.2008.09.018

Google Scholar

[32] Zhou Z. H., Biologically Inspired Nanotechnology.

Google Scholar

[33] E. Gazit, Use of Biomolecumar Templates for Fabrication of Metal Nanowires, the Journal of FEBS, 317-322, (2006).

Google Scholar

[34] Cui H. G., Webber M. J., Stupp S. I., Self-Assembly of Peptide Amphihiles: From Molecules to Nanostructures of Biomaterials, Biopolymers, 94(1), 1-18, (2010).

DOI: 10.1002/bip.21328

Google Scholar

[35] Mankar S., Anoop A., Sen S., Maji S. K., Nanomaterials: Amyloids Reflect Their Brighter Side, Nano Reviews, 2, (2011).

DOI: 10.3402/nano.v2i0.6032

Google Scholar

[36] Sleytr U. B., Huber C., Pum D., Schuster B., Egelseer E. M., S-layers As a Tool Kit for Nanobiotechnological Applications, FEMS Microbiology Letters, 267(2), 131-144, (2007).

DOI: 10.1111/j.1574-6968.2006.00573.x

Google Scholar