Self-Assembly of Peptide Amphiphiles: Molecularly Engineered Bionanomaterials

Abstract:

Article Preview

Molecular self-assembly is ubiquitous in nature and has now emerged as a new approach in chemical synthesis, engineering, nanotechnology, polymer science, and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in the recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use of peptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. Today, the study of biological self-assembly systems represent a significant advance in the molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries of existing disciplines. Many self-assembling systems are range from bi-and tri-block copolymers to complex DNA structures as well as simple and complex proteins and peptides. The attractiveness of such bottom-up processes lies in their capability to build uniform, functional units or arrays and the possibility to exploit such structures at meso-and macroscopic scale for life and non-life science applications.

Info:

Periodical:

Edited by:

Abdul Hadi, Fazlena Hamzah and Miradatul Najwa Mohd Rodhi

Pages:

586-593

Citation:

H. Shamsudeen and H. L. Tan, "Self-Assembly of Peptide Amphiphiles: Molecularly Engineered Bionanomaterials", Advanced Materials Research, Vol. 1113, pp. 586-593, 2015

Online since:

July 2015

Export:

Price:

$41.00

* - Corresponding Author

[2] Hong Y. S., Pritzker M. D., Legge R. L., Effect of NaCl and Peptide Concentration on the Self-Assembly of an Ionic-Complementary Peptide EAK16-II, Colloids and Surfaces B: Biointerfaces, 46, 152-161, (2005).

DOI: https://doi.org/10.1016/j.colsurfb.2005.11.004

[3] Davies R. P. W., Beevers A. A., Boden N., Carrick L. M., Fishwick C. W. G., McLeish T. C. B., Nyrkova I., Semenov A. N., Self-Assembling β-Sheet Tape Forming Peptides, Supramolecular Chemistry, 18(5), 435-443, (2006).

DOI: https://doi.org/10.1080/10610270600665855

[4] Hwang W., Marini D. M., Kamm R. D., Zhang S. G., Supramolecular Structure of Helical Ribbons Self-Assembled From A β-Sheet Peptide, Journal of Chemical Physics, 118(1), 389-397, (2003).

DOI: https://doi.org/10.1063/1.1524618

[5] S. G. Zhang, Building From the Bottom Up, Materials Today, (2003).

[6] Tan H. L., The Art of Molecular Self-Assembly, The Chemical Engineer (IChemE), 849, 48-51, (2012).

[7] S. Zhang, T. Holmes, C. Lockshin, and a Rich, Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane., Proc. Natl. Acad. Sci. U. S. A., vol. 90, no. 8, p.3334–8, Apr. (1993).

DOI: https://doi.org/10.1073/pnas.90.8.3334

[8] Caplan, M.R., Schwartzfarb, E.M., Zhang, S.G., Kamm, R.D., Lauffenburger, D.A. Control of Self-Assembling Oligopeptide Matrix Formation through systematic variation of Amino Acid Sequence. Biomaterials 23 (1), 219-227.

DOI: https://doi.org/10.1016/s0142-9612(01)00099-0

[9] A. Aggeli, I. a Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. McLeish, a N. Semenov, and N. Boden, Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers., Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 21, p.11857–62, Oct. (2001).

DOI: https://doi.org/10.1073/pnas.191250198

[10] M. R. Caplan, P. N. Moore, S. Zhang, R. D. Kamm, and D. a Lauffenburger, Self-assembly of a beta-sheet protein governed by relief of electrostatic repulsion relative to van der Waals attraction., Biomacromolecules, vol. 1, no. 4, p.627–31, Jan. (2000).

DOI: https://doi.org/10.1021/bm005586w

[11] H. Yang, M. Pritzker, S. Y. Fung, Y. Sheng, W. Wang, and P. Chen, Anion effect on the nanostructure of a metal ion binding self-assembling peptide., Langmuir, vol. 22, no. 20, p.8553–62, Sep. (2006).

DOI: https://doi.org/10.1021/la061238p

[12] D. Zou, Z. Tie, C. Lu, M. Qin, X. Lu, M. Wang, W. Wang, and P. Chen, Effects of hydrophobicity and anions on self-assembly of the peptide EMK16-II., Biopolymers, vol. 93, no. 4, p.318–29, Apr. (2010).

DOI: https://doi.org/10.1002/bip.21340

[13] Z. Da-Wei, T. Zuo-Xiu, Q. Meng, L. Chun-Mei, and W. Wei, Effect of Phosphate on the Self-Assembly of Peptide EMK16-II, Chinese Phys. Lett., vol. 26, no. 8, p.088103, Aug. (2009).

DOI: https://doi.org/10.1088/0256-307x/26/8/088103

[14] Y. Hong, M. D. Pritzker, R. L. Legge, and P. Chen, Effect of NaCl and peptide concentration on the self-assembly of an ionic-complementary peptide EAK16-II., Colloids Surf. B. Biointerfaces, vol. 46, no. 3, p.152–61, Dec. (2005).

DOI: https://doi.org/10.1016/j.colsurfb.2005.11.004

[15] S. Jun, Y. Hong, H. Imamura, B. -Y. Ha, J. Bechhoefer, and P. Chen, Self-assembly of the ionic peptide EAK16: the effect of charge distributions on self-assembly., Biophys. J., vol. 87, no. 2, p.1249–59, Aug. (2004).

DOI: https://doi.org/10.1529/biophysj.103.038166

[16] P. Sciences, S. Boothroyd, and A. Science, Peptide Self-assembly : Controlling Conformation and Mechanical Properties A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences Stephen Boothroyd, (2011).

[17] Pochan, D.J., Schneidar J.P., Kreitsinger,J., Ozbas,B., Rajagopal,K., Haines,L., Thermally Reversible Hydrogels via intramolecular folding and consequent Self-assembly of de Novo Designed Peptide. Journal of the American Chemical Society 2003, 125, (39), 11802-11803.

DOI: https://doi.org/10.1021/ja0353154

[18] Z. Yan, J. Wang, J. Zhang, M. Qin, and W. Wang, Structural selection of ionic-complementary peptides with electrostatic interactions, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 82, no. 3, (2010).

DOI: https://doi.org/10.1103/physreve.82.031917

[19] M. Altman, P. Lee, A. Rich, and S. Zhang, Conformational behavior of ionic self-complementary peptides, p.1095–1105, (2000).

[20] P. Chen, Self-assembly of ionic-complementary peptides: a physicochemical viewpoint, Colloids Surfaces A Physicochem. Eng. Asp., vol. 261, no. 1–3, p.3–24, Jul. (2005).

DOI: https://doi.org/10.1016/j.colsurfa.2004.12.048

[21] Y. Sheng, W. Wang, and P. Chen, Interaction of an ionic complementary peptide with a hydrophobic graphite surface, Protein Sci., vol. 19, no. 9, p.1639–48, Oct. (2010).

[22] P. Arosio, M. Owczarz, H. Wu, A. Butté, and M. Morbidelli, End-to-end self-assembly of RADA 16-I nanofibrils in aqueous solutions., Biophys. J., vol. 102, no. 7, p.1617–26, Apr. (2012).

DOI: https://doi.org/10.1016/j.bpj.2012.03.012

[23] G. Fichman and E. Gazit, Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications., Acta Biomater., vol. 10, no. 4, p.1671–82, Apr. (2014).

DOI: https://doi.org/10.1016/j.actbio.2013.08.013

[24] Z. Luo, S. Wang, and S. Zhang, Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis., Biomaterials, vol. 32, no. 8, p.2013–20, Mar. (2011).

DOI: https://doi.org/10.1016/j.biomaterials.2010.11.049

[25] T. Wang, X. Zhong, S. Wang, F. Lv, and X. Zhao, Molecular Mechanisms of RADA16-1 Peptide on Fast Stop Bleeding in Rat Models., Int. J. Mol. Sci., vol. 13, no. 11, p.15279–90, Jan. (2012).

DOI: https://doi.org/10.3390/ijms131115279

[26] K. L. Niece, J. D. Hartgerink, J. J. J. M. Donners, and S. I. Stupp, Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction, J. Am. Chem. Soc., vol. 125, no. 24, p.7146–7147, (2003).

DOI: https://doi.org/10.1021/ja028215r

[27] A. Mohammed, A. F. Miller, and A. Saiani, 3D Networks from Self-Assembling Ionic-Complementary Octa-Peptides, Macromol. Symp., vol. 251, no. 1, p.88–95, Apr. (2007).

DOI: https://doi.org/10.1002/masy.200750512

[28] A. Saiani, A. Mohammed, H. Frielinghaus, R. Collins, N. Hodson, C. M. Kielty, M. J. Sherratt, and A. F. Miller, Self-assembly and gelation properties of [small alpha]-helix versus [small beta]-sheet forming peptides, Soft Matter, vol. 5, no. 1, p.193–202, (2009).

DOI: https://doi.org/10.1039/b811288f

[29] Cole L. A., Review: New Discoveries on the Biology and Detection of Human Chorionic Gonadotropin, Reproductive Biology and Endocrinology, 7(8), (2009).

[30] Wiradharma N, Ting Y. W., Yang Y. Y., Self-AssembledOligopeptide Nanostructures for Co-delivery of Drug and Gene with Synergistic Therapeutic Effect, Biomaterials, 30, 3100-2109, (2009).

DOI: https://doi.org/10.1016/j.biomaterials.2009.03.006

[31] Branco M. C., Schneider J. P., Self-Assembling Materials for Therapeutic Delivery, Acta Biomaterilia 5, 817-831, (2009).

[32] Zhou Z. H., Biologically Inspired Nanotechnology.

[33] E. Gazit, Use of Biomolecumar Templates for Fabrication of Metal Nanowires, the Journal of FEBS, 317-322, (2006).

[34] Cui H. G., Webber M. J., Stupp S. I., Self-Assembly of Peptide Amphihiles: From Molecules to Nanostructures of Biomaterials, Biopolymers, 94(1), 1-18, (2010).

DOI: https://doi.org/10.1002/bip.21328

[35] Mankar S., Anoop A., Sen S., Maji S. K., Nanomaterials: Amyloids Reflect Their Brighter Side, Nano Reviews, 2, (2011).

DOI: https://doi.org/10.3402/nano.v2i0.6032

[36] Sleytr U. B., Huber C., Pum D., Schuster B., Egelseer E. M., S-layers As a Tool Kit for Nanobiotechnological Applications, FEMS Microbiology Letters, 267(2), 131-144, (2007).

DOI: https://doi.org/10.1111/j.1574-6968.2006.00573.x