Synthesis of Hydroxyapatite via Sol-Gel Dip-Coating Method on Ceramic Support

Article Preview

Abstract:

Hydroxyapatite (HA) has been used extensively in application of biomedical either in the form of porous ceramics, dense ceramics, powders or granules for gap filling or coatings for implants. Synthetic HA also has an excellent ion exchange properties that used as a filling material for chromatography columns. Furthermore, many researchers have reported that high removal efficiency of the heavy metals can be achieved by using synthetic HA. In this study, HA was synthesized via sol-gel method by using calcium nitrate tetrahydrate and triethyl phosphate as the precursors and 2-metoxiethanol ether as an organic solvent. Then, HA sol was deposited on silica-alumina based ceramics whose made by recycled sanitary ware waste by dip-coating method. The obtained coated substrates were then dried at 150°C and subsequently subjected to calcination up to 1000°C. Fourier Transform Infrared (FTIR) characterization for the HA powders dried at 150°C and calcined at 600°C, 800°C and 1000°C were carried out to come out with the spectral characteristic indicative of chemical bonding. High Purity of the obtained hydroxyapatite was confirmed by XRD analysis. The SEM micrographs displayed the microstructure of the HA coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

599-604

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] White, A. A., Best, S. M., & Kinloch, I. A. (2007). Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. International Journal of Applied Ceramic Technology, 4(1), 1-13.

DOI: 10.1111/j.1744-7402.2007.02113.x

Google Scholar

[2] LeGeros, R. Z. (2002). Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopaedics and related research, 395, 81-98.

DOI: 10.1097/00003086-200202000-00009

Google Scholar

[3] Santos, C., Clarke, R. L., Braden, M., Guitian, F., & Davy, K. W. M. (2002). Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials, 23(8), 1897-(1904).

DOI: 10.1016/s0142-9612(01)00331-3

Google Scholar

[4] Murugan, R., & Ramakrishna, S. (2004). Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 25(17), 3829-3835.

DOI: 10.1016/j.biomaterials.2003.10.016

Google Scholar

[5] Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1994). Effects of aqueous Al, Cd, Cu, Fe (II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental science & technology, 28(7), 1219-1228.

DOI: 10.1021/es00056a007

Google Scholar

[6] Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1-18.

DOI: 10.1016/j.jcis.2004.04.005

Google Scholar

[7] Verwilghen, C., Rio, S., Ramaroson, J., Nzihou, A., & Sharrock, P. The Use Of Hydroxyapatite For The Removal Of Heavy Metals From Industrial Flue Gas Part B: Investigation in pilot scale.

Google Scholar

[8] Rio, S., Verwilghen, C., Ramaroson, J., Nzihou, A., & Sharrock, P. (2007). Heavy metal vaporization and abatement during thermal treatment of modified wastes. Journal of hazardous materials, 148(3), 521-528.

DOI: 10.1016/j.jhazmat.2007.03.009

Google Scholar

[9] Cummings, L. J., Snyder, M. A., & Brisack, K. (2009). Protein chromatography on hydroxyapatite columns. Methods in enzymology, 463, 387-404.

DOI: 10.1016/s0076-6879(09)63024-x

Google Scholar

[10] Miao, X., Hu, Y., Liu, J., & Huang, X. (2007). Hydroxyapatite coating on porous zirconia. Materials Science and Engineering: C, 27(2), 257-261.

DOI: 10.1016/j.msec.2006.03.009

Google Scholar

[11] Vallet-Regí, M., & González-Calbet, J. M. (2004). Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 32(1), 1-31.

DOI: 10.1016/j.progsolidstchem.2004.07.001

Google Scholar

[12] Hsieh, M. F., Perng, L. H., Chin, T. S., & Perng, H. G. (2001). Phase purity of sol–gel-derived hydroxyapatite ceramic. Biomaterials, 22(19), 2601-2607.

DOI: 10.1016/s0142-9612(00)00448-8

Google Scholar

[13] Lacefield, W. R. (1993). Hydroxylapatite coatings. Advanced Series in Ceramics, 1, 223-238.

Google Scholar

[14] Huang, Z., Liu, R., & Xiao, X. (2003). Advancement in electrophoretic deposition of hydroxyapatite bioceramic coating. Guisuanyan Xuebao(Journal of the Chinese Ceramic Society)(China), 31, 591-597.

Google Scholar

[15] Cheang, P., & Khor, K. A. (1995). Thermal spraying of hydroxyapatite (HA) coatings: effects of powder feedstock. Journal of materials processing technology, 48(1), 429-436.

DOI: 10.1016/0924-0136(94)01679-u

Google Scholar

[16] De Groot, K., Wolke, J. G. C., & Jansen, J. A. (1998). Calcium phosphate coatings for medical implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 212(2), 137-147.

DOI: 10.1243/0954411981533917

Google Scholar

[17] McPherson, R. (1989). A review of microstructure and properties of plasma sprayed ceramic coatings. Surface and Coatings Technology, 39, 173-181.

DOI: 10.1016/0257-8972(89)90052-2

Google Scholar

[18] Tian, J., & Tian, J. (2001). Preparation of porous hydroxyapatite. Journal of Materials Science, 36(12), 3061-3066.

Google Scholar

[19] Habibovic, P., Barrere, F., Blitterswijk, C. A., Groot, K., & Layrolle, P. (2002). Biomimetic hydroxyapatite coating on metal implants. Journal of the American Ceramic Society, 85(3), 517-522.

DOI: 10.1111/j.1151-2916.2002.tb00126.x

Google Scholar

[20] Kalita, S. J., Bhardwaj, A., & Bhatt, H. A. (2007). Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science and Engineering: C, 27(3), 441-449.

DOI: 10.1016/j.msec.2006.05.018

Google Scholar

[21] Chai, C. S., & Ben-Nissan, B. (1999). Bioactive nanocrystalline sol-gel hydroxyapatite coatings. Journal of Materials Science: Materials in Medicine, 10(8), 465-469.

DOI: 10.1007/978-94-011-0157-8_18

Google Scholar

[22] Rawlings, R. D. (1993). Bioactive glasses and glass-ceramics. Clinical materials, 14(2), 155-179.

DOI: 10.1016/0267-6605(93)90038-9

Google Scholar

[23] Ramanan, S. R., & Venkatesh, R. (2002). Study Of Preparation And Characterization Of Hydroxyapatite Coatings By Sol-Gel Technique. Asean Journal On Science And Technology For Development, 19(1), 55-62.

DOI: 10.29037/ajstd.329

Google Scholar

[24] Gibson, I. R., Best, S. M., & Bonfield, W. (1999). Chemical characterization of silicon-substituted hydroxyapatite. Journal of Biomedical Materials Research, 44(4), 422-428.

DOI: 10.1002/(sici)1097-4636(19990315)44:4<422::aid-jbm8>3.0.co;2-#

Google Scholar

[25] Rehman, I., & Bonfield, W. (1997). Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. Journal of Materials Science: Materials in Medicine, 8(1), 1-4.

DOI: 10.1023/a:1018570213546

Google Scholar

[26] Gibson, I. R., & Bonfield, W. (2002). Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. Journal of biomedical materials research, 59(4), 697-708.

DOI: 10.1002/jbm.10044

Google Scholar