[1]
White, A. A., Best, S. M., & Kinloch, I. A. (2007). Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. International Journal of Applied Ceramic Technology, 4(1), 1-13.
DOI: 10.1111/j.1744-7402.2007.02113.x
Google Scholar
[2]
LeGeros, R. Z. (2002). Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopaedics and related research, 395, 81-98.
DOI: 10.1097/00003086-200202000-00009
Google Scholar
[3]
Santos, C., Clarke, R. L., Braden, M., Guitian, F., & Davy, K. W. M. (2002). Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials, 23(8), 1897-(1904).
DOI: 10.1016/s0142-9612(01)00331-3
Google Scholar
[4]
Murugan, R., & Ramakrishna, S. (2004). Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 25(17), 3829-3835.
DOI: 10.1016/j.biomaterials.2003.10.016
Google Scholar
[5]
Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1994). Effects of aqueous Al, Cd, Cu, Fe (II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental science & technology, 28(7), 1219-1228.
DOI: 10.1021/es00056a007
Google Scholar
[6]
Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1-18.
DOI: 10.1016/j.jcis.2004.04.005
Google Scholar
[7]
Verwilghen, C., Rio, S., Ramaroson, J., Nzihou, A., & Sharrock, P. The Use Of Hydroxyapatite For The Removal Of Heavy Metals From Industrial Flue Gas Part B: Investigation in pilot scale.
Google Scholar
[8]
Rio, S., Verwilghen, C., Ramaroson, J., Nzihou, A., & Sharrock, P. (2007). Heavy metal vaporization and abatement during thermal treatment of modified wastes. Journal of hazardous materials, 148(3), 521-528.
DOI: 10.1016/j.jhazmat.2007.03.009
Google Scholar
[9]
Cummings, L. J., Snyder, M. A., & Brisack, K. (2009). Protein chromatography on hydroxyapatite columns. Methods in enzymology, 463, 387-404.
DOI: 10.1016/s0076-6879(09)63024-x
Google Scholar
[10]
Miao, X., Hu, Y., Liu, J., & Huang, X. (2007). Hydroxyapatite coating on porous zirconia. Materials Science and Engineering: C, 27(2), 257-261.
DOI: 10.1016/j.msec.2006.03.009
Google Scholar
[11]
Vallet-Regí, M., & González-Calbet, J. M. (2004). Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 32(1), 1-31.
DOI: 10.1016/j.progsolidstchem.2004.07.001
Google Scholar
[12]
Hsieh, M. F., Perng, L. H., Chin, T. S., & Perng, H. G. (2001). Phase purity of sol–gel-derived hydroxyapatite ceramic. Biomaterials, 22(19), 2601-2607.
DOI: 10.1016/s0142-9612(00)00448-8
Google Scholar
[13]
Lacefield, W. R. (1993). Hydroxylapatite coatings. Advanced Series in Ceramics, 1, 223-238.
Google Scholar
[14]
Huang, Z., Liu, R., & Xiao, X. (2003). Advancement in electrophoretic deposition of hydroxyapatite bioceramic coating. Guisuanyan Xuebao(Journal of the Chinese Ceramic Society)(China), 31, 591-597.
Google Scholar
[15]
Cheang, P., & Khor, K. A. (1995). Thermal spraying of hydroxyapatite (HA) coatings: effects of powder feedstock. Journal of materials processing technology, 48(1), 429-436.
DOI: 10.1016/0924-0136(94)01679-u
Google Scholar
[16]
De Groot, K., Wolke, J. G. C., & Jansen, J. A. (1998). Calcium phosphate coatings for medical implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 212(2), 137-147.
DOI: 10.1243/0954411981533917
Google Scholar
[17]
McPherson, R. (1989). A review of microstructure and properties of plasma sprayed ceramic coatings. Surface and Coatings Technology, 39, 173-181.
DOI: 10.1016/0257-8972(89)90052-2
Google Scholar
[18]
Tian, J., & Tian, J. (2001). Preparation of porous hydroxyapatite. Journal of Materials Science, 36(12), 3061-3066.
Google Scholar
[19]
Habibovic, P., Barrere, F., Blitterswijk, C. A., Groot, K., & Layrolle, P. (2002). Biomimetic hydroxyapatite coating on metal implants. Journal of the American Ceramic Society, 85(3), 517-522.
DOI: 10.1111/j.1151-2916.2002.tb00126.x
Google Scholar
[20]
Kalita, S. J., Bhardwaj, A., & Bhatt, H. A. (2007). Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science and Engineering: C, 27(3), 441-449.
DOI: 10.1016/j.msec.2006.05.018
Google Scholar
[21]
Chai, C. S., & Ben-Nissan, B. (1999). Bioactive nanocrystalline sol-gel hydroxyapatite coatings. Journal of Materials Science: Materials in Medicine, 10(8), 465-469.
DOI: 10.1007/978-94-011-0157-8_18
Google Scholar
[22]
Rawlings, R. D. (1993). Bioactive glasses and glass-ceramics. Clinical materials, 14(2), 155-179.
DOI: 10.1016/0267-6605(93)90038-9
Google Scholar
[23]
Ramanan, S. R., & Venkatesh, R. (2002). Study Of Preparation And Characterization Of Hydroxyapatite Coatings By Sol-Gel Technique. Asean Journal On Science And Technology For Development, 19(1), 55-62.
DOI: 10.29037/ajstd.329
Google Scholar
[24]
Gibson, I. R., Best, S. M., & Bonfield, W. (1999). Chemical characterization of silicon-substituted hydroxyapatite. Journal of Biomedical Materials Research, 44(4), 422-428.
DOI: 10.1002/(sici)1097-4636(19990315)44:4<422::aid-jbm8>3.0.co;2-#
Google Scholar
[25]
Rehman, I., & Bonfield, W. (1997). Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. Journal of Materials Science: Materials in Medicine, 8(1), 1-4.
DOI: 10.1023/a:1018570213546
Google Scholar
[26]
Gibson, I. R., & Bonfield, W. (2002). Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. Journal of biomedical materials research, 59(4), 697-708.
DOI: 10.1002/jbm.10044
Google Scholar