[1]
M. C. Potter, Electrical effects accompanying the decomposition of organic compounds. Royal Society (Formerly Proceedings of the Royal Society) B, 84 (1911) 260-276.
Google Scholar
[2]
B. Cohen, The Bacterial Culture as an Electrical Half-Cell, J. Bacteriol. 21 (1931) 18–19.
Google Scholar
[3]
B.E. Logan, P. Aelterman, B. Hamelers,R. Rozendal,U. Schröder,J. Keller, S. Freguiac, W. Verstraete, and K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40 (17) (2006) 5181 – 5192.
DOI: 10.1021/es0605016
Google Scholar
[4]
F. David and S.P.J. Higson, Biofuel cells – Recent advances and applications. Biosens. Bioelectro., 22 (2007) 1224 – 1235.
Google Scholar
[5]
N. Kim, Y. Choi, S. Jung, and S. Kim, Development of microbial fuel cells using Proteus Vulgaris. Bull. Kor. Chem. Soc., 21 (1) (2000) 44 – 48.
Google Scholar
[6]
K.P. Nevin , H. Richter, S. F. Covalla, J.P. Johnson, T.L. Woodard, and A. L. Orloff, Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol., 10 (2008).
DOI: 10.1111/j.1462-2920.2008.01675.x
Google Scholar
[7]
K. Rabaey, and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23 (2005) 291–298.
DOI: 10.1016/j.tibtech.2005.04.008
Google Scholar
[8]
M. Di Lorenzo, T.P. Curtis, I. M. Head, and K. Scott, A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res., 43 (3) (2009) 3145 – 3154.
DOI: 10.1016/j.watres.2009.01.005
Google Scholar
[9]
D.H. Park, and G.H. Zeikus, Electricity generation in microbial fuel cells using neutral red as electronophore. Appl. Environ. Microbiol., 66 (2000) 1292 – 1297.
DOI: 10.1128/aem.66.4.1292-1297.2000
Google Scholar
[10]
H. Liu, R. Ramanathan and B.E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol., 2004, 38, 2281-2285.
DOI: 10.1021/es034923g
Google Scholar
[11]
A. P. Borole, C. Y. Hamilton, T. Vishnivetskaya, D. Leak and C. Andras, Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow through systems. Biochem. Eng. J., 2009, 48, 71-80.
DOI: 10.1016/j.bej.2009.08.008
Google Scholar
[12]
Y. F. Choo, J. Lee, I. S. Chang and B. H. Kim, Bacterial Communities in Microbial Fuel Cells Enriched with High Concentrations of Glucose and Glutamate. J. Microbial. Biotechnol., 2006, 16 (9), 1481-1484.
Google Scholar
[13]
S. You, Q. Zhao, J. Zhang, H. Liu, J. Jiang, and S. Zhao, Increased sustainable electricity generation in up-flow air-cathode microbial fuel cell. Biosens. Bioelectro., 23 (2008) 1157 – 1160.
DOI: 10.1016/j.bios.2007.10.010
Google Scholar
[14]
A. Venkataraman, , M.A. Rosenbaum, , S.D. Perkins, J.J. Werner, and L.T. Angenent, Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy Environ. Sci., 11 (2011).
DOI: 10.1039/c1ee01377g
Google Scholar
[15]
R. M. Donlan, Biofilms: microbial life on surfaces. Emer Infect Dis ., 8(2002) 881-890.
DOI: 10.3201/eid0809.020063
Google Scholar