[1]
S. B. Allin, Applied Polymer Science: 21st Century (edited by Craver, Clara D.; Carraher, Charles E., Jr. ), J. Chem. Educ., vol. 79, p.942, (2002).
DOI: 10.1021/ed079p942
Google Scholar
[2]
R. Saiah, R. Gattin, and P. A. Sreekumar, Properties and Biodegradation Nature of Thermoplastic Starch, (1950).
DOI: 10.5772/35348
Google Scholar
[3]
R. M. Coserea, D. Dimonie, M. Dimonie, and G. Hubca, Some Aspects Concerning the Rheology of Biodegradable Starch Based Materials, U.P.B. Sci. Bull., vol. 74, (2012).
Google Scholar
[4]
N. G. R. Babu, N. Anitha, and R. H. K. Rani, Recent Trends in Biodegradable Products from Biopolymers, Advanced Biotech., vol. 9, no. 11, p.30–34, (2010).
Google Scholar
[5]
A. Krzan, Biodegradable polymers and plastics, Century. Europe., p.1–8, (2012).
Google Scholar
[6]
S. America, Biodegradable Polymers Report by IHS Chemical, Nov. (2012).
Google Scholar
[7]
American Society for Testing and Material (ASTM), 2013. Standards and Test Methods, 1996-2013, ASTM International, West Conshohocken, PA 19428-2959, USA.
Google Scholar
[8]
B. Imre and B. Pukanszky, Compatibilization in bio-based and biodegradable polymer blends, European Polymer Journal., vol. 49, no. 2013, p.1215–1233, (2013).
DOI: 10.1016/j.eurpolymj.2013.01.019
Google Scholar
[9]
A. Sivan, New perspectives in plastic biodegradation., Curr. Opin. Biotechnology., vol. 22, no. 3, p.422–6, Jun. (2011).
Google Scholar
[10]
H. Bhardwaj, R. Gupta, and A. Tiwari, Communities of Microbial Enzymes Associated with Biodegradation of Plastics, Journal of Polymers and the Environmen. t, vol. 21. p.575–579, (2013).
DOI: 10.1007/s10924-012-0456-z
Google Scholar
[11]
H. C. Obasi, F. N. Onuoha, I. O. Eze, S. C. Nwanonenyi, and I. O. Arukalam, Effect Of Soil Burial On Properties of Polypropylene ( PP )/ Plasticized Potato Starch ( PPS ) Blends, The International Journal Of Engineering And Science., vol. 2. p.14–18, (2013).
Google Scholar
[12]
H. C. Obasi, I. O. Igwe, and I. C. Madufor, Effect of Soil Burial on Tensile Properties of Polypropylene/Plasticized Cassava Starch Blends, Advances in Materials Science and Engineering., vol. 2013, p.1–5, (2013).
DOI: 10.1155/2013/326538
Google Scholar
[13]
N. S. Mohd Makhtar, M. N. Muhd Rodhi, M. Musa, and K. H. Ku Hamid, Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer, Int. J. Polym. Sci., vol. 2013, p.1–7, (2013).
DOI: 10.1155/2013/373854
Google Scholar
[14]
E. Sarka, J. Kolacek, K. Hruskova, Z. Krulis, J. Kotek, L. Ruzek, and M. Ruzkova, Wheat B-Starch: Application in Biodegradable Films, J. Agric. Sci. Appl., vol. 1, no. 02, p.45–48, Jun. (2012).
DOI: 10.14511/jasa.2012.010202
Google Scholar
[15]
N. A. Azahari, N. Othman, and H. Ismail, Biodegradation Studies of Polyvinyl Alcohol / Corn Starch Blend Films in Solid and Solution Media, Journal of Physical Science., vol. 22, no. 2, p.15–31, (2011).
DOI: 10.4028/www.scientific.net/amr.747.668
Google Scholar
[16]
M. E. Hoque, T. J. Ye, L. C. Yong, and K. Mohd Dahlan, Sago Starch-Mixed Low-Density Polyethylene Biodegradable Polymer: Synthesis and Characterization, Journal of Materials., vol. 2013, p.1–7, (2013).
DOI: 10.1155/2013/365380
Google Scholar
[17]
J. Arutchelvi, M. Sudhakar, A. Arkatkar, M. Doble, S. Bhaduri, and P. V. Uppara, Biodegradation of polyethylene and polypropylene, Indian Journal of Biotechnology., vol. 7, p.9–22, (2008).
DOI: 10.2174/1874829500902010068
Google Scholar
[18]
J. Eubeler, M. Bernhard, and T. Knepper, Environmental biodegradation of synthetic polymers II . Biodegradation of different polymer groups, Trends in Analytical Chemistry., vol. 29, no. 1, p.84–100, (2010).
DOI: 10.1016/j.trac.2009.09.005
Google Scholar
[19]
A. A. Shah, F. Hasan, A. Hameed, and S. Ahmed, Biological degradation of plastics: A comprehensive review, Biotechnology Advances, vol. 26. p.246–265, (2008).
DOI: 10.1016/j.biotechadv.2007.12.005
Google Scholar
[20]
Y. Tokiwa, B. P. Calabia, C. U. Ugwu, and S. Aiba, Biodegradability of plastics., Int. J. Mol. Sci., vol. 10, no. 9, p.3722–42, Sep. (2009).
DOI: 10.3390/ijms10093722
Google Scholar
[21]
M. Borghei, A. Karbassi, A. Oromiehie, and A. Javid, Microbial biodegradable potato starch based low density polyethylene, African Journal of Biotechnology., vol. 9, no. 26, p.4075–4080, (2010).
Google Scholar
[22]
M. Rutkowska, A. Heimowska, K. Krasowska, and H. Janik, Biodegradability of Polyethylene Starch Blends in Sea Water, Polish Journal of Environmental Studies., vol. 11, no. 3, p.267–271, (2002).
Google Scholar
[23]
M. Flieger, M. Kantorova, a Prell, T. Rezanka, and J. Votruba, Biodegradable plastics from renewable sources., Folia Microbiol., vol. 48, no. 1, p.27–44, Jan. (2003).
DOI: 10.1007/bf02931273
Google Scholar
[24]
R. Sabo, L. Jin, N. Stark, and R. E. Ibach, Effect of Environmental Conditions on the Mechanical Properties and Fungal Degradation of Polycaprolactone/ Microcrystalline Cellulose/Wood Flour Composites, BioResources., vol. 8, no. Perstorp 2011, p.3322–3335, (2013).
DOI: 10.15376/biores.8.3.3322-3335
Google Scholar
[25]
J. G Sanchez., A. Tsuchii., Y. Tokiwa, Degradation of polycaprolactone at 50 °C by a thermotolerantAspergillus sp., Biotechnology Left., vol. 22, pp.849-853, (2000).
Google Scholar
[26]
N. Othman, N. A. Azahari, and H. Ismail, Thermal Properties of Polyvinyl Alcohol (PVOH) / Corn Starch Blend Film, Malaysian Polymer Journal., vol. 6, pp.147-154, (2011).
Google Scholar
[27]
F. Parvin, M. A. Rahman, J. M. M. Islam, M. a. Khan, and a. H. M. Saadat, Preparation and Characterization of Starch/PVA Blend for Biodegradable Packaging Material, Adv. Mater. Res., vol. 123–125, p.351–354, Aug. (2010).
DOI: 10.4028/www.scientific.net/amr.123-125.351
Google Scholar
[28]
X. Tang, and S. Alavi, Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability, Carbohydrate Polymers., vol. 85, no. 1, pp.7-16, (2011).
DOI: 10.1016/j.carbpol.2011.01.030
Google Scholar
[29]
F. Debiagi, M. Victória, E. Grossmann, and F. Yamashita, Biodegradable Foams Based on Starch , Polyvinyl Alcohol , Chitosan and Sugarcane Fibers Obtained by Extrusion, Braz. Arch. Biol. Technol., vol. 54, no. October, p.1043–1052, (2011).
DOI: 10.1590/s1516-89132011000500023
Google Scholar
[30]
M. Shimao, Biodegradation of plastics, p.242–247, (2001).
Google Scholar
[31]
L. Yu, T. Wu, T. Chen, F. Yang, and M. Xiang, Polypropylene random copolymer in pipe application: Performance improvement with controlled molecular weight distribution, Thermochim. Acta., vol. 578, p.43–52, Feb. (2014).
DOI: 10.1016/j.tca.2013.11.009
Google Scholar
[32]
D.R. Lu, C.M. Xiao, and S.J. Xu, Starch-based completley biodegradable polymer materials, eXPRESS Polymer Letters., vol. 3, pp.366-375, March. (2009).
DOI: 10.3144/expresspolymlett.2009.46
Google Scholar
[33]
P. Halley, and L. Averous, Mechanical Properties of Starch-based Plastic. In L. A. P. Halley, Starch Polymers: From Genetic Engineering to Green Applications, San Diago, USA: Elsevier, pp.197-190, March (2014).
Google Scholar
[34]
M. A. Qing-lan and G. U. O. Hui-qing, Making starch-filled poly vinyl chloride ( PVC ) plastics by chemical methods, in Proc. 3rd Intern. Conf. Functional Molecules., p.254–256.
Google Scholar
[35]
H. Takahashi, T. Suda, Y. Tanaka, and B. Kimura, Cellular hydrophobicity of Listeria monocytogenes involves initial attachment and biofilm formation on the surface of polyvinyl chloride., Lett. Appl. Microbiol., vol. 50, no. 6, p.618–25, Jun. (2010).
DOI: 10.1111/j.1472-765x.2010.02842.x
Google Scholar