Palladium Nanoparticles Synthesized by Bio-Templates for Suzuki Coupling Reaction

Article Preview

Abstract:

Palladium nanoparticles (Pd NPs) are the most widely used functional materials for a variety of catalytic reactions. In this work, we synthesized the size-controlled Pd NPs using amyloid fibrils as bio-templates. First, 1mg/ml insulin peptides were incubated at 80°Cfor 3 days to form protein fibrils. Then, layer-by-layer technology was used to prepare Pd-insulin fibrils multilayer film as catalyst by alternatively depositing insulin fibrils and palladium chloride which has been aged at several different temperatures for two days. The chemical compositions of Pd-insulin film were also characterized by X-ray photoelectron spectroscopy (XPS). The Pd-insulin film demonstrated high isolated yield in promoting Suzuki cross-coupling reaction. In addition, the effect of Pd NPs size on the catalytic activity was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-19

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. M. Soto, and B. R. Ratna, Virus hybrids as nanomaterials for biotechnology. Curr. Opin. Biotechnol. 21 (2010) 426–438.

Google Scholar

[2] C. X. Yang, A. K. Manocchi, B. Lee, et al., Viral-templated palladium nanocatalysts for Suzuki coupling reaction. J. Mater. Chem. 21 (2011) 187–194.

DOI: 10.1039/c0jm03145c

Google Scholar

[3] J. Brange, L. Andersen, E. D. Laursen, et al., Toward understanding insulin fibrillation. J. Pharm. Sci. 86 (1997) 517–525.

DOI: 10.1021/js960297s

Google Scholar

[4] N. Miyaura, T. Yanagi, and A. Suzuki, The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun. 11 (1981) 513–519.

DOI: 10.1080/00397918108063618

Google Scholar

[5] J. Ma, Y. G. Ji, H. J. Sun, et al., Synthesis of carbon supported palladium nanoparticles catalyst using a facile homogeneous precipitation-reduction reaction method for formic acid electrooxidation. Appl. Surf. Sci. 257 (2011) 10483–10488.

DOI: 10.1016/j.apsusc.2011.07.007

Google Scholar

[6] N. B. Milic, and Z. D. Bugarcic, Hydrolysis of the palladium (II) ion in a sodium chloride medium. Transition Met. Chem. 9 (1984) 173–176.

DOI: 10.1007/bf00618610

Google Scholar

[7] X. F. Zhou, R. Li, B. Dai, et al., The fabrication and electrical characterization of protein fibril -templated one-dimensional palladium nanostructures. Eur. Polym. J. 49 (2013) 1957–(1963).

DOI: 10.1016/j.eurpolymj.2013.04.006

Google Scholar

[8] F. Leroux, M. Gysemans, S. Bals, et al., Three-Dimensional characterization of helical silver nanochains mediated by protein assemblies. Adv Mater. 22 (2010) 2193–2197.

DOI: 10.1002/adma.200903657

Google Scholar

[9] J. S. Lim, S. M. Kim, et al., Biotemplated aqueous-phase palladium crystallization in the absence of external reducing agents. Nano Lett. 10 (2010) 3863–3867.

DOI: 10.1021/nl101375f

Google Scholar

[10] H. Heinz, B. L. Farmer, R. B. Pandey, et al., Nature of molecular interactions of peptides with Gold, Palladium and Pd-Au bimetal surfaces in aqueous solution. J. Am. Chem. Soc. 131 (2009) 9704–9714.

DOI: 10.1021/ja900531f

Google Scholar

[11] Z. Liu, Z. Y. Du, H. Song, et al., The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption. J. Colloid Interface Sci. 416 (2014) 124–132.

DOI: 10.1016/j.jcis.2013.10.061

Google Scholar

[12] A. F. Lee, J. N. Naughton, Z. Liu, et al., High-pressure XPS of crotyl alcohol selective oxidation over metallic and oxidized Pd(111). ACS. Catal. 2 (2012) 2235−2241.

DOI: 10.1021/cs300450y

Google Scholar

[13] M. Knez, M. Sumser, A. M. Bittner, et al., Spatially selective nucleation of metal clusters on the Tobacco Mosaic Virus. Adv. Funct. Mater. 14 (2004) 116–124.

DOI: 10.1002/adfm.200304376

Google Scholar

[14] A. Decottignies, A. Fihri, G. Azemar, et al., Ligandless Suzuki–Miyaura reaction in neat water with or without native β-cyclodextrin as additive. Catal. Commun. 32 (2013) 101–107.

DOI: 10.1016/j.catcom.2012.12.004

Google Scholar

[15] A. Dewan, U. Bora, and G. Borah, A simple and efficient tetradentate Schiff base derived palladium complex for Suzuki–Miyaura reaction in water. Tetrahedron Lett. 55 (2014) 1689–1692.

DOI: 10.1016/j.tetlet.2014.01.041

Google Scholar

[16] R. Narayanan, and M. A. El-Sayed, Effect of colloidal catalysis on the nanoparticle size distribution: Dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the Suzuki coupling reaction. J. Phys. Chem. B. 108 (2004) 8572–8580.

DOI: 10.1021/jp037169u

Google Scholar