One-Pot Synthesis of Environmental Friendly Ni3S2 Quantum Dots

Article Preview

Abstract:

A one-pot synthetic method for non-toxic Ni3S2 quantum dots (QDs) was proposed by using commercial available nickel acetate as the precursor. The obtained quantum dots were characterized by photoluminescence spectroscopic, powder X-ray diffraction, and transmission electron microscopy. The maximum fluorescence emission peak of Ni3N2 QDs is at 469 nm under the 365 nm ultraviolet light irradiation in PL Spectra. The TEM data reveals that the predominance of particles with a polyhedron structure and the range of average particle size are between 5 and 11 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V.I. Klimov, J.A. Hollingsworth, H. Htoon, Giant, CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance, Nano Lett. 12 (2011).

DOI: 10.1021/nl203620f

Google Scholar

[2] O.E. Semonin, J.M. Luther, S. Choi, H. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell, Science. 334 (2011) 1530-1533.

DOI: 10.1126/science.1209845

Google Scholar

[3] A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. kovsh, L. West, C. Bornholdt, N. Grote, A. Zhukov, Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser. Electron. Lett. 43 (2007) 1430-1431.

DOI: 10.1049/el:20072953

Google Scholar

[4] W.W. Yu, E. Chang, R. Drezek, V.L. Colvin, Water-soluble quantum dots for biomedical applications, Biochem. Biophys. Res. Commun. 348 (2006) 781-786.

DOI: 10.1016/j.bbrc.2006.07.160

Google Scholar

[5] J.M. Klostranec, W.C.W. Chan, Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mater. 18 (2006) 1953-(1964).

DOI: 10.1002/adma.200500786

Google Scholar

[6] A. de Kergommeaux, J. Faure-Vincent, A. Pron, R. de Bettignies, M. Bernard, R. Peter, Surface Oxidation of Tin Chalcogenide Nanocrystals Revealed by 119Sn–Mössbauer Spectroscopy. J. Am. Chem. Soc. 134 (2012) 11659-11666.

DOI: 10.1021/ja3033313

Google Scholar

[7] H.J. Kim, D.J. Kim, S. Srinivasa Rao, A. Dennyson Savariraj, K. Soo-Kyoung, M.K. Son, C.V.V.M. Gopi, K. Prabakar, Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells, Electrochim. Acta. 2014, 127: 427-432.

DOI: 10.1016/j.electacta.2014.02.019

Google Scholar

[8] H.J. Kim, S.W. Kim, C.V.V. M Gopi, et al, Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode. J. Power Sources. 268 (2014) 163-170.

DOI: 10.1016/j.jpowsour.2014.06.007

Google Scholar

[9] S.C. Han, K.W. Kim, H.J. Ahn, J.Y. Lee, Charge–discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries, J. Alloys Compd. 361 (2003) 247-251.

DOI: 10.1016/s0925-8388(03)00380-3

Google Scholar

[10] T. Zhu, H.B. Wu, Y. Wang, R. Xu, X.W. Lou, Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production, Adv. Eng. Mater. 2 (2012) 1497-1502.

DOI: 10.1002/aenm.201200269

Google Scholar

[11] J.J. Wang, Z.J. Li, X.B. Li, X.B. Fan, Q.Y. Meng, S. Yu, C.B. Li, J.X. Li,C.H. Tung, L.Z. Wu, Photocatalytic Hydrogen Evolution from Glycerol and Water over Nickel‐Hybrid Cadmium Sulfide Quantum Dots under Visible‐Light Irradiation, ChemSusChem. 7 (2014).

DOI: 10.1002/cssc.201400028

Google Scholar

[12] J.Z. Wang, S.L. Chou, S.Y. Chew, J.Z. Sun, M. Forsyth, D.R. MacFarlane, H.K. Liu, Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries, Solid State Ionics. 179 (2008) 2379-2382.

DOI: 10.1016/j.ssi.2008.09.007

Google Scholar

[13] P. Samokhvalov, M. Artemyev, I. Nabiev, Basic principles and current trends in colloidal synthesis of highly luminescent semiconductor nanocrystals, Chem. Eur. J. 19 (2013) 1534-1546.

DOI: 10.1002/chem.201202860

Google Scholar