Pd/SiO2 Organic-Inorganic Hybrid Materials by Sol-Gel Method: Preparation and Thermal Stability under H2 Atmosphere

Article Preview

Abstract:

Pd/SiO2 organic-inorganic hybrid materials were prepared by adding PdCl2 into methyl-modified silica sol. The Pd/SiO2 hybrid materials were characterized by X-ray diffraction (XRD), fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The effects of calcination temperature and Pd-doping on the phase transition of Pd element and the thermal stability of CH3 group in the Pd/SiO2 organic-inorganic hybrid materials were investigated. The results showed that the reduced metallic Pd0 exhibits good thermal stability under H2 atmosphere in the calcination process. Pd element in noncalcined Pd/SiO2 materials exists in PdCl2 form, calcination at 200 °C in a H2 atmosphere produces some metallic Pd0 and calcinations at 350 °C results in the complete transformation of Pd2+ to metallic Pd0. With the increase of calcination temperature, the Pd0 particle sizes increase and the hydrophobic Si−CH3 bands decrease in intensity. As the calcination temperature is greater than or equal to 350 °C, the loading of metallic Pd0 nearly has no influence on the chemical structure but, with the increase of Pd content, the formed Pd0 particle size increases. To keep the hydrophobicity of Pd/SiO2 membrane materials, the optimal calcination temperature is about 350 °C under H2 atmosphere.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-27

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kai, I. Taniguchi, S. Duan, F.A. Chowdhury, T. Saito, K. Yamazaki, K. Ikeda, T. Ohara, S. Asano, S. Kazama, Molecular Gate Membrane: Poly(amidoamine) Dendrimer/polymer Hybrid Membrane Modules for CO2 Capture, Energy Procedia 37(2013)961-968.

DOI: 10.1016/j.egypro.2013.05.191

Google Scholar

[2] S. Duan, I. Taniguchi, T. Kai, S. Kazama. Development of poly(amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO2 capture at elevated Pressures, Energy Procedia 37(2013)924-931.

DOI: 10.1016/j.egypro.2013.05.187

Google Scholar

[3] T.V. Gestel, D. Sebold, F. Hauler, W.A. Meulenberg, H.P. Buchkremer, Potentialities of microporous membranes for H2/CO2 separation in future fossil fuel power plants: Evaluation of SiO2, ZrO2, Y2O3-ZrO2 and TiO2-ZrO2 sol-gel membranes, J. Membr. Sci. 359(2010).

DOI: 10.1016/j.memsci.2010.04.002

Google Scholar

[4] A. Huang, Y. Chen, Q. Liu, N. Wang, J. Jiang, J. Caro, Synthesis of highly hydrophobic and permselective metal-organic framework Zn(BDC)(TED)0. 5 membranes for H2/CO2 separation, J. Membr. Sci. 454(2014)126-132.

DOI: 10.1016/j.memsci.2013.12.018

Google Scholar

[5] S. Nayebossadri, J. Speight, D. Book, Effects of low Ag additions on the hydrogen permeability of Pd-Cu-Ag hydrogen separation membranes, J. Membr. Sci. 451(2014)216-225.

DOI: 10.1016/j.memsci.2013.10.002

Google Scholar

[6] A.E. Lewis, H. Zhao, H. Syed, C.A. Wolden, J.D. Way, PdAu and PdAuAg composite membranes for hydrogen separation from synthetic water-gas shift streams containing hydrogen sulfide. J. Membr. Sci. 465(2014)167-176.

DOI: 10.1016/j.memsci.2014.04.022

Google Scholar

[7] G. Manzolini, M. Gazzani, D.M. Turi, E. Macchi, Application of hydrogen selective membranes to IGCC, Energy Procedia 37(2013)2274-2283.

DOI: 10.1016/j.egypro.2013.06.108

Google Scholar

[8] A.E. Lewis, D.C. Kershner, S.N. Paglieri, M.J. Slepicka, J.D. Way, Pd-Pt/YSZ composite membranes for hydrogen separation from synthetic water–gas shift streams. J. Membr. Sci. 437(2013)257-264.

DOI: 10.1016/j.memsci.2013.02.056

Google Scholar

[9] Q. Wei, Y.L. Ding, Z.R. Nie, X.G. Liu, Q.Y. Li, Wettability, pore structure and performance of perfluorodecyl-modified silica membranes. J. Membr. Sci. 466(2014)114-122.

DOI: 10.1016/j.memsci.2014.04.036

Google Scholar

[10] B. Yu, H. Cong, X. Zhao, Hybrid brominated sulfonated poly(2, 6-diphenyl-1, 4-phenyleneoxide) and SiO2 nanocomposite membranes for CO2/N2 separation, Progress in Natural Science: Materials International 22(2012)661-667.

DOI: 10.1016/j.pnsc.2012.11.004

Google Scholar

[11] J.H. Ryu, D.S. Chang, B.G. Choi, J.W. Yoon, C.S. Lim, K.B. Shim, Fabrication of Ag nanoparticles-coated macroporous SiO2 structure by using polystyrene spheres. Mater. Chem. Phys. 2-3(2007) 486-491.

DOI: 10.1016/j.matchemphys.2006.08.010

Google Scholar

[12] S.D. Bhagat, Y.H. Kim, Y.S. Ahn, Room temperature synthesis of water repellent silica coatings by the dip coat technique, Appl. Surf. Sci. 253 (2006)2217-2221.

DOI: 10.1016/j.apsusc.2006.04.030

Google Scholar

[13] Z. Zhang, Y. Tanigami, R. Terai, H. Wakabayashi, Preparation of transparent methyl-modified silica gel, J. Non-Cryst. Solids 189 (1995)212-217.

DOI: 10.1016/0022-3093(95)00209-x

Google Scholar

[14] S. Lee, Y.C. Cha, H.J. Hwang, J.W. Moon, I.S. Han, The effect of pH on the physicochemical properties of silica aerogels prepared by an ambient pressure drying method, Mater. Lett. 61 (2007)3130-3133.

DOI: 10.1016/j.matlet.2006.11.010

Google Scholar

[15] H.M. Jiang, Z. Zheng, X.L. Wang, Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents, Vib. Spectrosc. 46 (2008)1-7.

DOI: 10.1016/j.vibspec.2007.07.002

Google Scholar

[16] J. Yang, J.R. Chen, Surface free energies and steam stability of methyl-modified silica membranes, J. Porous. Mater. 16 (2009)737-744.

DOI: 10.1007/s10934-008-9256-1

Google Scholar