[1]
H. Xu, P. Reunchan, S.X. Ouyang, H. Tong, N.T. Umezawa, T. Kako and J.H. Ye. Anatase TiO2 single crystals exposed with high-reactive {111} facets toward efficient H2 evolution. Chem. Mater. 25 (2013) 405−411.
DOI: 10.1021/cm303502b
Google Scholar
[2]
K.L. Lv, J.G. Yu, J.J. Fan and M. Jaroniec. Rugby-like anatase titania hollow nanoparticles with enhanced photocatalytic activity. CrystEngComm, 13 (2011) 7044-7048.
DOI: 10.1039/c1ce05907f
Google Scholar
[3]
J.Y. Wang, T.J. Zhang, D.F. Wang, R.K. Pan, Q.Q. Wang and H.M. Xia. Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer. Journal of Alloys and Compounds. 551 (2013) 82–87.
DOI: 10.1016/j.jallcom.2012.09.113
Google Scholar
[4]
B.X. Lei, Q.P. Luo, X.Y. Yu, W.Q. Wu, C.Y. Su and D.B. Kuang. Hierarchical TiO2 flowers built from TiO2 nanotubes for efficient Pt-free based flexible dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14 (2012) 13175-13179.
DOI: 10.1039/c2cp42746j
Google Scholar
[5]
Z.H. Liu, X.J. Su, G.L. Hou, S. Bi, Z. Xiao and H.P. Jia. Formation of spherical TiO2 nanorod aggregates with multiple functions for dye-sensitized solar cells. Journal of Alloys and Compounds. 555 (2013) 68–73.
DOI: 10.1016/j.jallcom.2012.12.042
Google Scholar
[6]
F. Xu, X.Y. Zhang, Y. Wu, D.P. Wu, Z.Y. Gao and K. Jiang. Facile synthesis of TiO2 hierarchical microspheres assembled by ultrathin nanosheets for dye-sensitized solar cells. Journal of Alloys and Compounds. 574 (2013) 227–232.
DOI: 10.1016/j.jallcom.2013.04.119
Google Scholar
[7]
X. Li, T. Xia, C.H. Xu, J. Murwchick and X.B. Chen. Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catalysis Today. 225 (2014) 64– 73.
DOI: 10.1016/j.cattod.2013.10.086
Google Scholar
[8]
R. Daghrir, P. Drogui and D. Robert. Modified TiO2 for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research. 52 (2013) 3581−3599.
DOI: 10.1021/ie303468t
Google Scholar
[9]
L. Andronic, L. Isac and A. Duta. Photochemical synthesis of copper sulphide/titanium oxide photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry. 221(2011) 30–37.
DOI: 10.1016/j.jphotochem.2011.04.018
Google Scholar
[10]
W.B. Niu, S.L. Wu, S.F. Zhang, J. Li and L. Li. Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles. Dalton Trans. 40 (2011) 3305-3314.
DOI: 10.1039/c0dt01344g
Google Scholar
[11]
S.L. Wu, Y.H. Ning, and S.F. Zhang. Hydrothermal synthesis of β-NaYF4: Yb, Er nanocrystals with upconversion fluorescence using tetraethylene pentamine as chelating ligand. Journal of Nanomaterials. 115 (2012) 605-613.
DOI: 10.1155/2012/369605
Google Scholar
[12]
D.L. Gao, X.Y. Zhang, H.R. Zheng, W. Gao and E.J. He. Yb3+/Er3+ co-doped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion. Journal of Alloys and Compounds. 554 (2013) 395–399.
DOI: 10.1016/j.jallcom.2012.12.010
Google Scholar
[13]
X. Liang, X. Wang, J. Zhuang, Q. Peng and Y.D. Li. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 17 (2007) 2757–2765.
DOI: 10.1002/adfm.200600807
Google Scholar