Promotion Effects of La2O3 on Ni/Al2O3 Catalysts for CO2 Methanation

Article Preview

Abstract:

Ni/Al2O3 catalysts improved with different La contents were prepared by the conventional co-impregnation method and characterized by X-ray powder diffraction (XRD), N2 adsorption-desorption, H2 temperature-programmed reduction (H2-TPR). Catalytic performances for CO2 methanation under condition (CO2/H2=4.1:1, 1 atm) were discussed in detail. XRD result demonstrated that the addition of La was in favor of decreasing the Ni particle size and increasing the dispersion of Ni species. The H2-TPR showed that La can change the proportion of various Ni species and increase the content of easily reducible Ni species. These results indicate that La species induce effect, resulting in smaller particle size and weaker interaction between active components and the support, higher dispersions, and reducibility of active phases, ultimately improving catalytic activity of CO2 methanation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-210

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.D. Cail, J. W, W. Chu, X.Q. Chen, Z.J. Li, Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts:Effects of ZrO2 promoter and preparation method of novel ZrO2-A12O3 cartier,Journal of Natural Gas Chemistry. 20 ( 2011 ) 318–324.

DOI: 10.1016/s1003-9953(10)60187-9

Google Scholar

[2] N.S. Spinner, J.A. Vega and W. E. Mustain, Recent progress in the electrochemical conversion and utilization of CO2, Catal Sci Technol. 2 (2012) 19 –28.

DOI: 10.1039/c1cy00314c

Google Scholar

[3] Y.L. Yao, X.Y. Liu, D. Hildebrandt and D. Glasser. FischerTropsch Synthesis Using H2/CO/CO2 Syngas Mixtures over an Iron Catalyst, Ind. Eng. Chem. Res. 50 (2011) 11002–11012.

DOI: 10.1021/ie200690y

Google Scholar

[4] S.H. Choi, J.H. Drese and C.W. Jones. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources, ChemSusChem. 2 ( 2009) 796 – 854.

DOI: 10.1002/cssc.200900036

Google Scholar

[5] M.M. Hossain, H.I. de Lasa. Chemical-looping combustion (CLC) for inherent CO2 separations - a review, Chemical Engineering Science. 63 (2008) 4433 – 4451.

DOI: 10.1016/j.ces.2008.05.028

Google Scholar

[6] R. Razzaq, H.W. Zhu, L. Jiang, U. Muhammad, C.S. Li, S.J. Zhang, Catalytic Methanation of CO and CO2 in Coke Oven Gas over Ni−Co/ZrO2−CeO2, Ind. Eng. Chem. Res. 52 (2013) 2247−2256.

DOI: 10.1021/ie301399z

Google Scholar

[7] L. Tian, X.H. Zhao, B.S. Liu, W.D. Zhang. Preparation of an Industrial Ni-Based Catalyst and Investigation on CH4/CO2 Reforming to Syngas, Energy & Fuels. 23 ( 2009 ) 607– 612.

DOI: 10.1021/ef800647n

Google Scholar

[8] S.Y. Foo, C.K. Cheng, T.H. Nguyen, Oxidative CO2 Reforming of Methane on Alumina-Supported Co-Ni Catalyst, Ind. Eng. Chem. Res. 49 ( 2010 ) 10450–10458.

DOI: 10.1021/ie100460g

Google Scholar

[9] T. Riedel, M. Claeys, H. Schulz, G. Schaub, S.S. Nam, K.W. Jun, M.J. Choi, G. Kishan, K.W. Lee. Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts, Applied Catalysis A: General 186 (1999).

DOI: 10.1016/s0926-860x(99)00173-8

Google Scholar

[10] A. Trovarelli, C. Leitenburg, G. Dolcetti, J. LLorca. CO2 Methanation under Transient and Steady-State Conditions over Rh/CeO2-Promoted Rh/SiO2: The Role of Surface and Bulk Ceria Journal of Catal. 151 ( 1995 ) 111−124.

DOI: 10.1006/jcat.1995.1014

Google Scholar

[11] S. Hwang, U.G. Hong, J. Lee, J.G. Seo, J.H. Baik, D.J. Koh, H. Lim, I.K. Song, Methanation of carbon dioxide over mesoporous Ni–Fe–Al2O3 catalysts prepared by a coprecipitation method: Effect of precipitation agent, Journal of Industrial and Engineering Chemistry. 19 (2013).

DOI: 10.1016/j.jiec.2013.03.015

Google Scholar

[12] G.J. Zhi, X.N. Guo, Y.Y. Wang, G. Q. Jin, X.Y. Guo, Effect of La2O3modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide, Catalysis Communications. 16 (2011) 56–59.

DOI: 10.1016/j.catcom.2011.08.037

Google Scholar

[13] B.T. Li, K.J. Maruyama, M. Nurunnabi, K. Kunimori, K. Tomishige. Effect of Ni Loading on Catalyst Bed TemperatureinOxidative Steam Reforming of Methane over α-Al2O3-Supported Ni Catalysts, . Ind Eng Chem Res. 44 ( 2005 ) 485−494.

DOI: 10.1021/ie0493210

Google Scholar

[14] A.M. Zhao, W.Y. Ying, H.T. Zhang, H.F. Ma, D. Y. Fang, Ni–Al2O3catalysts prepared by solution combustion method for syngas methanation, Catalysis Communications. 17 (2012) 34–38.

DOI: 10.1016/j.catcom.2011.10.010

Google Scholar

[15] D.C. Hu, J.J. Gao, Y. Ping, L.H. Jia, P. Guanawan, Z.Y. Zhong, G.W. Xu, F.N. Gu, f. Su, Enhanced Investigation of CO Methanation over Ni/Al2O3Catalysts for Synthetic Natural Gas Production, Ind. Eng. Chem. Res. 51 ( 2012 ) 4875−4886.

DOI: 10.1021/ie300049f

Google Scholar

[16] J.Q. Zhu, X.X. Peng, L. Yao, J. Shen, D.M. Tong, C.W. Hu, The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO2catalyst for CO2 reforming of methane International J of hydrogen energy. 36 (2011) 7094−7104.

DOI: 10.1016/j.ijhydene.2011.02.133

Google Scholar

[17] Y. Bang , J.G. Seo, I.K. Song. Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni-La-Al2O3 aerogel catalysts: Effect of La content International J of hydrogen energy . 36 ( 2011 ) 8307− 8315.

DOI: 10.1016/j.ijhydene.2011.04.126

Google Scholar

[18] Ogawa Y, Toba M, Yoshimura Y, Effect of lanthanum promotion on the structural and catalytic properties of nickel-molybdenum/alumina catalysts , Applied Catalysis A. General 246 (2003) 213–225.

DOI: 10.1016/s0926-860x(03)00049-8

Google Scholar