Enhancement of Luminescence of YPO4:Eu3+,Yb3+ Nanophosphor Synthesized by Hydrothermal Method

Article Preview

Abstract:

YPO4 nanowires (NWs) and nanoparticles (NPs) have been synthesized by hydrothermal methods respectively in the absence and presence of EDTA. The Eu3+ and Yb3+ codoped YPO4 NWs and NPs prepared directly from hydrothermal systems show efficient red down-conversion luminescence (DL) and upconversion luminescence (UL) at room temperature without further annealing process. EDTA plays a critical role in controlling the morphologies of YPO4 nanocrystals in hydrothermal systems and enhances both the DL and UL intensities of Eu3+ by the factor of 100%. Monodispersed Eu3+ and Yb3+ codoped YPO4 NPs will be a new candidate for application in infrared displays and biological labels.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. F. Yang, X. T. Dong, J. X. Wang, and G. X. Liu, Mater. Lett. 63 (2009) 629.

Google Scholar

[2] Y. Fujishiro, H. Ito, T. Sato, and A. Okuwaki, J. Alloy. Comp. 252 (1997) 103.

Google Scholar

[3] L. X. Yu, D. C. Li, M. X. Yue, J. Yao, and S. Z. Lu, Chem. Phys. 326 (2006) 478.

Google Scholar

[4] Y. J. Zhang and H. M. Guan, Mater. Res. Bull. 40 (2005) 1536.

Google Scholar

[5] H. Meyssamy, K. Riwotzki, A. Kornowski, S. Naused, and M. Haase, Adv. Mater. 11 (1999) 840.

DOI: 10.1002/(sici)1521-4095(199907)11:10<840::aid-adma840>3.0.co;2-2

Google Scholar

[6] H. W. Song, L. X. Yu, S. Z. Lu, T. Wang, Z. X. Liu, and L. M. Yang, Appl. Phys. Lett. 85(2004) 470.

Google Scholar

[7] L. DiLeo, D. Romano, L. Schaeffer, B. Gersten, C. Foster, and M. C. Gelabert, J. Cryst. Growth 271 (2004) 65.

Google Scholar

[8] C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, and J. Lin, J. Phys. Chem. C 112 (2008) 13395.

Google Scholar

[9] F. Luo, C. J. Jia, W. Song, L. P. You, and C. H. Yan, Cryst. Growth Des. 5 (2005) 137.

Google Scholar

[10] G. S. Yi, H. C. Lu, S. Y. Zhao, Y. Ge, W. J. Yang, D. P. Chen, L. H. Guo, Nano. lett. 4 (2004) 2191.

Google Scholar

[11] J. H. Zeng, J. Su, Z. H. Li, R. X. Ya, and Y. D. Li, Adv. Mater. 17 (2005) 2119.

Google Scholar

[12] V. D. Tuan and G. Guy, Sensors Actuators B 90 (2003) 104.

Google Scholar

[13] S. Heer, O. Lehmann, M. Haase, and H. U. Gu¨del, Angew. Chem. Int. Ed. 42 (2003) 3179.

Google Scholar

[14] S. Heer, K. Ko¨mpe, H. U. Gu¨del, and M. Haase, Adv. Mater. 16 (2004) 2102.

Google Scholar

[15] R. P. Chin, Y. R. Shen, and V. Petrova-koch, Science 270 (1995) 776.

Google Scholar

[16] T. N. Thomas, T. A. Land, J. J. DeYoreo, and W. H. Casey, Langmuir 20 (2004) 7643.

Google Scholar

[17] X. T. Sun, W. T. Shi, L. Xiang, and W. C. Zhu, Nanoscale Res. Lett. 3 (2008) 386.

Google Scholar