Influence of FRP-to-Concrete Gap Effect on Axial Strains of FRP-Confined Concrete Columns

Article Preview

Abstract:

This paper reports on an experimental investigation on the influence of FRP-to-concrete interface gap, caused by concrete shrinkage, on axial compressive behavior of concrete-filled FRP tube (CFFT) columns. A total of 12 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were manufactured. 3 of these specimens were instrumented to monitor long term shrinkage strain development and the remaining 9 were tested under monotonic axial compression. The influence of concrete shrinkage was examined by applying a gap of up to 0.06 mm thickness at the FRP-to-concrete interface, simulating 800 microstrain of shrinkage in the radial direction. Axial strain recordings were compared on specimens instrumented with two different measurement methods: full-and mid-height linear variable displacement transformers (LVDTs). Results of the experimental study indicate that the influence of interface gap on stress-strain behavior is significant, with an increase in interface gap resulting in a decrease and increase in the compressive strength and ultimate axial strain, respectively. It was also observed that an increase in interface gap leads to a slight loss in axial stress at the transition region of the stress-strain curve. Finally, it is found that an increase in the interface gap results in a significant decrease in the ratio of the ultimate axial strains obtained from mid-section and full-height LVDTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

760-765

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ozbakkaloglu, T. and Lim, J.C. (2013) Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model, Compos. Part B. 55: 607 - 634.

DOI: 10.1016/j.compositesb.2013.07.025

Google Scholar

[2] Ozbakkaloglu, T., Lim, J.C., and Vincent, T. (2013) FRP-confined concrete in circular sections: Review and assessment of the stress-strain models, Eng. Struct. 49: 1068-1088.

DOI: 10.1016/j.engstruct.2012.06.010

Google Scholar

[3] Lim, J.C. and Ozbakkaloglu, T. (2014) Confinement model for FRP-confined high-strength concrete, ASCE, J. Compos. Constr. 18(4): 04013058.

DOI: 10.1061/(asce)cc.1943-5614.0000376

Google Scholar

[4] Lim, J.C. and Ozbakkaloglu, T. (2014) Lateral strain-to-axial strain relationship of confined concrete, ASCE, J. Struct. Eng. doi: 10. 1061/(ASCE)ST. 1943-541X. 0001094.

DOI: 10.1061/(asce)st.1943-541x.0001094

Google Scholar

[5] Lim, J.C. and Ozbakkaloglu, T. (2014) Design model for FRP-confined normal- and high-strength concrete square and rectangular columns, Mag. Conc. Res. 66(20): 1020-1035.

DOI: 10.1680/macr.14.00059

Google Scholar

[6] Ilki, A. and Kumbasar, N. (2003) Compressive behavior of carbon fiber composite jacketed concrete with circular and non-circular cross-sections, Earthquake Eng. 7(3): 381-406.

DOI: 10.1080/13632460309350455

Google Scholar

[7] Berthet, J.F., Ferrier. E., and P., H. (2005) Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study., Constr. Build. Mater. 19(3): 223 - 232.

DOI: 10.1016/j.conbuildmat.2004.05.012

Google Scholar

[8] Rousakis, T. and Karabinis, A. (2008) Substandard reinforced concrete members subjected to compression: FRP confining effects., Mater. Struct. 41(9): 1595 - 1611.

DOI: 10.1617/s11527-008-9351-4

Google Scholar

[9] Idris, Y. and Ozbakkaloglu, T. (2013) Seismic behavior of high-strength concrete-filled FRP tube columns, ASCE, J. Compos. Constr. 17(6): 04013013.

DOI: 10.1061/(asce)cc.1943-5614.0000388

Google Scholar

[10] Ozbakkaloglu, T. (2013) Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression, Compos. Part B. 54: 97-111.

DOI: 10.1016/j.compositesb.2013.05.007

Google Scholar

[11] Vincent, T. and Ozbakkaloglu, T. (2013) Influence of concrete strength and confinement method on axial compressive behavior of FRP-confined high- and ultra high-strength concrete, Compos. Part B. 50: 413-428.

DOI: 10.1016/j.compositesb.2013.02.017

Google Scholar

[12] Vincent, T. and Ozbakkaloglu, T. (2013) Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete, Constr. Build. Mater. 47: 814-826.

DOI: 10.1016/j.conbuildmat.2013.05.085

Google Scholar

[13] Lim, J.C. and Ozbakkaloglu, T. (2014) Influence of silica fume on stress-strain behavior of FRP-confined HSC, Constr. Build. Mater. 63: 11-24.

DOI: 10.1016/j.conbuildmat.2014.03.044

Google Scholar

[14] Lim, J.C. and Ozbakkaloglu, T. (2014) Hoop strains in FRP-confined concrete columns: experimental observations, Mater. Struct. 10. 1617/s11527-014-0358-8.

DOI: 10.1617/s11527-014-0358-8

Google Scholar

[15] Ozbakkaloglu, T. and Vincent, T. (2014) Axial compressive behavior of circular high-strength concrete-filled FRP tubes, ASCE, J. Compos. Constr. 18(2): 04013037.

DOI: 10.1061/(asce)cc.1943-5614.0000410

Google Scholar

[16] Vincent, T. and Ozbakkaloglu, T. (2014) Influence of slenderness on stress-strain behavior of concrete-filled FRP tubes: an experimental study, ASCE, J. Compos. Constr. 10. 1061/(ASCE)CC. 1943-5614. 0000489, 04014029.

DOI: 10.1061/(asce)cc.1943-5614.0000489

Google Scholar

[17] Wong, Y. L., Yu, T., Teng, J. G., and Dong, S. L. (2008) Behavior of FRP-confined concrete in annular section columns, Compos. Part B. 39(3): 451-466.

DOI: 10.1016/j.compositesb.2007.04.001

Google Scholar

[18] Louk Fanggi, B. and Ozbakkaloglu, T. (2013) Compressive behavior of aramid FRP-HSC-steel double-skin tubular columns, Constr. Build. Mater. 48: 554-565.

DOI: 10.1016/j.conbuildmat.2013.07.029

Google Scholar

[19] Ozbakkaloglu, T. and Louk Fanggi, B. (2013) FRP-HSC-steel composite columns: behavior under monotonic and cyclic axial compression, Materials and Structures. doi: 10. 1617/s11527-013-0216-0.

DOI: 10.1617/s11527-013-0216-0

Google Scholar

[20] Albitar, M., Ozbakkaloglu, T., and Louk Fanggi, B. (2014) Behavior of FRP-HSC-Steel double-skin tubular columns under cyclic axial compression, ASCE, J. Compos. Constr. DOI: 10. 1061/(ASCE)CC. 1943-5614. 0000510, 04014041.

DOI: 10.1061/(asce)cc.1943-5614.0000510

Google Scholar

[21] Ozbakkaloglu, T. and Idris, Y. (2014) Seismic behavior of FRP-high-strength concrete-steel double skin tubular columns, ASCE, J. Struct. Eng. 140(6): 04014019.

DOI: 10.1061/(asce)st.1943-541x.0000981

Google Scholar

[22] Ozbakkaloglu, T. and Louk Fanggi, B. (2014) Axial compressive behavior of FRP-concrete-steel double-skin tubular columns made of normal- and high-strength concrete, ASCE, J. Compos. Constr. 18(1), 04013027.

DOI: 10.1061/(asce)cc.1943-5614.0000401

Google Scholar

[23] Roeder, C., Cameron, B., and Brown, C. (1999) Composite action in concrete filled tubes, ASCE, J. Struct. Eng. 125(5): 477 - 484.

DOI: 10.1061/(asce)0733-9445(1999)125:5(477)

Google Scholar

[24] Ichinose, L.H., Watanabe, E., and Nakai, H. (2001) An Experimental Study on Creep of Concrete Filled Steel Pipes, Journal of Constructional Steel Research. 57(4): 453 - 466.

DOI: 10.1016/s0143-974x(00)00021-3

Google Scholar

[25] Ma, Y.S. and Wang, Y.F. (2012) Creep of high strength concrete filled steel tube columns, Thin-Walled Structures. 53: 91 - 98.

DOI: 10.1016/j.tws.2011.12.012

Google Scholar

[26] Naguib, W. and Mirmiran, A. (2002) Time-dependent behavior of fiber-reinforced polymer-confined concrete columns under axial loads., ACI Struct. J. 99(2): 142-148.

DOI: 10.14359/11536

Google Scholar

[27] Karimi, K., Tait, M., and El-Dakhakhni, W. (2011) Testing and modeling of a novel FRP-encased steel-concrete composite column, Compos. Struct. 93(5): 1463-1473.

DOI: 10.1016/j.compstruct.2010.11.017

Google Scholar