[1]
Ozbakkaloglu, T. and Lim, J.C. (2013) Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model, Compos. Part B. 55: 607 - 634.
DOI: 10.1016/j.compositesb.2013.07.025
Google Scholar
[2]
Ozbakkaloglu, T., Lim, J.C., and Vincent, T. (2013) FRP-confined concrete in circular sections: Review and assessment of the stress-strain models, Eng. Struct. 49: 1068-1088.
DOI: 10.1016/j.engstruct.2012.06.010
Google Scholar
[3]
Lim, J.C. and Ozbakkaloglu, T. (2014) Confinement model for FRP-confined high-strength concrete, ASCE, J. Compos. Constr. 18(4): 04013058.
DOI: 10.1061/(asce)cc.1943-5614.0000376
Google Scholar
[4]
Lim, J.C. and Ozbakkaloglu, T. (2014) Lateral strain-to-axial strain relationship of confined concrete, ASCE, J. Struct. Eng. doi: 10. 1061/(ASCE)ST. 1943-541X. 0001094.
DOI: 10.1061/(asce)st.1943-541x.0001094
Google Scholar
[5]
Lim, J.C. and Ozbakkaloglu, T. (2014) Design model for FRP-confined normal- and high-strength concrete square and rectangular columns, Mag. Conc. Res. 66(20): 1020-1035.
DOI: 10.1680/macr.14.00059
Google Scholar
[6]
Ilki, A. and Kumbasar, N. (2003) Compressive behavior of carbon fiber composite jacketed concrete with circular and non-circular cross-sections, Earthquake Eng. 7(3): 381-406.
DOI: 10.1080/13632460309350455
Google Scholar
[7]
Berthet, J.F., Ferrier. E., and P., H. (2005) Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study., Constr. Build. Mater. 19(3): 223 - 232.
DOI: 10.1016/j.conbuildmat.2004.05.012
Google Scholar
[8]
Rousakis, T. and Karabinis, A. (2008) Substandard reinforced concrete members subjected to compression: FRP confining effects., Mater. Struct. 41(9): 1595 - 1611.
DOI: 10.1617/s11527-008-9351-4
Google Scholar
[9]
Idris, Y. and Ozbakkaloglu, T. (2013) Seismic behavior of high-strength concrete-filled FRP tube columns, ASCE, J. Compos. Constr. 17(6): 04013013.
DOI: 10.1061/(asce)cc.1943-5614.0000388
Google Scholar
[10]
Ozbakkaloglu, T. (2013) Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression, Compos. Part B. 54: 97-111.
DOI: 10.1016/j.compositesb.2013.05.007
Google Scholar
[11]
Vincent, T. and Ozbakkaloglu, T. (2013) Influence of concrete strength and confinement method on axial compressive behavior of FRP-confined high- and ultra high-strength concrete, Compos. Part B. 50: 413-428.
DOI: 10.1016/j.compositesb.2013.02.017
Google Scholar
[12]
Vincent, T. and Ozbakkaloglu, T. (2013) Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete, Constr. Build. Mater. 47: 814-826.
DOI: 10.1016/j.conbuildmat.2013.05.085
Google Scholar
[13]
Lim, J.C. and Ozbakkaloglu, T. (2014) Influence of silica fume on stress-strain behavior of FRP-confined HSC, Constr. Build. Mater. 63: 11-24.
DOI: 10.1016/j.conbuildmat.2014.03.044
Google Scholar
[14]
Lim, J.C. and Ozbakkaloglu, T. (2014) Hoop strains in FRP-confined concrete columns: experimental observations, Mater. Struct. 10. 1617/s11527-014-0358-8.
DOI: 10.1617/s11527-014-0358-8
Google Scholar
[15]
Ozbakkaloglu, T. and Vincent, T. (2014) Axial compressive behavior of circular high-strength concrete-filled FRP tubes, ASCE, J. Compos. Constr. 18(2): 04013037.
DOI: 10.1061/(asce)cc.1943-5614.0000410
Google Scholar
[16]
Vincent, T. and Ozbakkaloglu, T. (2014) Influence of slenderness on stress-strain behavior of concrete-filled FRP tubes: an experimental study, ASCE, J. Compos. Constr. 10. 1061/(ASCE)CC. 1943-5614. 0000489, 04014029.
DOI: 10.1061/(asce)cc.1943-5614.0000489
Google Scholar
[17]
Wong, Y. L., Yu, T., Teng, J. G., and Dong, S. L. (2008) Behavior of FRP-confined concrete in annular section columns, Compos. Part B. 39(3): 451-466.
DOI: 10.1016/j.compositesb.2007.04.001
Google Scholar
[18]
Louk Fanggi, B. and Ozbakkaloglu, T. (2013) Compressive behavior of aramid FRP-HSC-steel double-skin tubular columns, Constr. Build. Mater. 48: 554-565.
DOI: 10.1016/j.conbuildmat.2013.07.029
Google Scholar
[19]
Ozbakkaloglu, T. and Louk Fanggi, B. (2013) FRP-HSC-steel composite columns: behavior under monotonic and cyclic axial compression, Materials and Structures. doi: 10. 1617/s11527-013-0216-0.
DOI: 10.1617/s11527-013-0216-0
Google Scholar
[20]
Albitar, M., Ozbakkaloglu, T., and Louk Fanggi, B. (2014) Behavior of FRP-HSC-Steel double-skin tubular columns under cyclic axial compression, ASCE, J. Compos. Constr. DOI: 10. 1061/(ASCE)CC. 1943-5614. 0000510, 04014041.
DOI: 10.1061/(asce)cc.1943-5614.0000510
Google Scholar
[21]
Ozbakkaloglu, T. and Idris, Y. (2014) Seismic behavior of FRP-high-strength concrete-steel double skin tubular columns, ASCE, J. Struct. Eng. 140(6): 04014019.
DOI: 10.1061/(asce)st.1943-541x.0000981
Google Scholar
[22]
Ozbakkaloglu, T. and Louk Fanggi, B. (2014) Axial compressive behavior of FRP-concrete-steel double-skin tubular columns made of normal- and high-strength concrete, ASCE, J. Compos. Constr. 18(1), 04013027.
DOI: 10.1061/(asce)cc.1943-5614.0000401
Google Scholar
[23]
Roeder, C., Cameron, B., and Brown, C. (1999) Composite action in concrete filled tubes, ASCE, J. Struct. Eng. 125(5): 477 - 484.
DOI: 10.1061/(asce)0733-9445(1999)125:5(477)
Google Scholar
[24]
Ichinose, L.H., Watanabe, E., and Nakai, H. (2001) An Experimental Study on Creep of Concrete Filled Steel Pipes, Journal of Constructional Steel Research. 57(4): 453 - 466.
DOI: 10.1016/s0143-974x(00)00021-3
Google Scholar
[25]
Ma, Y.S. and Wang, Y.F. (2012) Creep of high strength concrete filled steel tube columns, Thin-Walled Structures. 53: 91 - 98.
DOI: 10.1016/j.tws.2011.12.012
Google Scholar
[26]
Naguib, W. and Mirmiran, A. (2002) Time-dependent behavior of fiber-reinforced polymer-confined concrete columns under axial loads., ACI Struct. J. 99(2): 142-148.
DOI: 10.14359/11536
Google Scholar
[27]
Karimi, K., Tait, M., and El-Dakhakhni, W. (2011) Testing and modeling of a novel FRP-encased steel-concrete composite column, Compos. Struct. 93(5): 1463-1473.
DOI: 10.1016/j.compstruct.2010.11.017
Google Scholar