Effect of Fiber Treatment on Fiber Strength and Fiber/Matrix Interface of Hemp Reinforced Polypropylene Composites

Article Preview

Abstract:

The use of natural fibers as reinforcement in composites is emerging. Several studies are underway to improve the mechanical characteristics of these fibers and its matrix interface properties for better load transfer. However, the treatments generally used are relatively expensive and complicated to apply. This work deals with the effect of new Fibroline process on tensile and interfacial properties of hemp fiber reinforced in polypropylene. Fibroline is a dry powder impregnation method which consists of submitting fibers and polymer powder under strong alternating electric field. Morphology and tensile properties of hemp fibers after different surface treatments (raw, dried, raw and Fibroline-treated, dried and Fibroline-treated) are evaluated. Interface properties of treated hemp fibers on polypropylene matrix are then characterized by fragmentation test of monofilament composites. Results showed the Fibroline treatment reduces the fiber mechanical properties but improves the load transfer efficiency due to random generation of surface cracks and better fiber/matrix adherence, respectively. For the case of dried and Fibroline-treated hemp fibers, large decrease in mechanical and interfacial properties was observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ASTM D 3379-75, « Standard Test Method for Tensile Strength and Young's Modulus for HighModulus Single-Filament Materials », Annual Book of ASTM Standards, vol. 08. 01, pp.128-131 (May 1989).

Google Scholar

[2] Baley C., « Fibres naturelles de renfort pour matériaux composites », Techniques de l'Ingénieur, REF AM5 130, (2005).

DOI: 10.51257/a-v1-n2220

Google Scholar

[3] Bledzki, A.K. and J. Gassan, « Composites reinforced with cellulose based fibers ». Progress in Polymer Science, 1999. 24(2): pp.221-274.

DOI: 10.1016/s0079-6700(98)00018-5

Google Scholar

[4] Drzal L.T., Herrera-Franco P.J., Ho H., Fiber-Matrix Interface Tests, Comprehensive Composite Materials. 2000, Pergamon: Oxford.

DOI: 10.1016/b0-08-042993-9/00036-x

Google Scholar

[5] Herrera-Franco P.J., Valadez-Gonzalez A., « A study of the mechanical properties of short naturalfiber reinforced composites », Composites, Part B 36 (2005) 597-608.

DOI: 10.1016/j.compositesb.2005.04.001

Google Scholar

[6] Korte S., Processing-Property Relationships of Hemp Fiber, thesis, University of Canterbury, (2006).

Google Scholar

[7] A.K. Mohanty, M. Misra, L.T. Drzal, S.E. Selke, B.R. Harte and G. Hinrichsen, Natural fibers, biopolymers, and biocomposites: an introduction. In: A.K. Mohanty, M. Misra and L.T. Drzal, Editors, Natural fibers, biopolymers, and biocomposites, CRC Press LLC, Boca Raton (FL) (2005).

DOI: 10.1201/9780203508206.ch1

Google Scholar

[8] Pardini L.C., Guilherme L., Manhani B., « Influence of the Testing Gage Length on the Strength, Young's Modulus and Weibull Modulus of Carbon Fibers and Glass Fibers », Materials research, Vol. 5, No 4, 411-420, (2002).

DOI: 10.1590/s1516-14392002000400004

Google Scholar

[9] Thygesen A., Properties of hemp fiber polymer composites. An optimization of fiber properties using novel defibration methods and fiber characterization, Ph. D thesis, The Royal Agricultural and Veterinary University of Denmark, April (2006).

Google Scholar

[10] Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J., « Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites ». Composites, Part B 30 (1999) 309-320.

DOI: 10.1016/s1359-8368(98)00054-7

Google Scholar

[11] Beckermann G.W., Pickering K.L., « Engineering and evaluation of hemp fiber reinforced polypropylene composites: Micro-mechanics and strength prediction modeling ». Composites: Part A (2008), doi: 10. 1016/j. compositesa. 2008. 11. 005.

DOI: 10.1016/j.compositesa.2008.11.005

Google Scholar

[12] S. J. Eichhorn, C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell, A. Dufresne, K. M. Entwistle, P. J. Herrera-Franco, G. C. Escamilla, L. Groom, M. Hughes, C. Hill, T. G. Rials, P. M. Wild « Current international research into cellulosic fibers and composites ». Journal of materials science 36 (2001).

DOI: 10.1023/a:1017512029696

Google Scholar