Chemical Structure Influence of Silicone Adhesives on Curing Process

Article Preview

Abstract:

The density increase of components used in power converters involves cooling problems and results to the use of new materials and innovative assembly processes (such as adhesive bonding). Searching for an adhesive family leads to the silicones. This paper focuses on the silicone adhesive formulation as regards the use requirements (temperature range, chemical agents). This first article is dealing with the influence of chemical structure on vulcanization process parameters and physical properties before ageing. The first adhesive family is the oxime terminated polydimethylsiloxane (PDMS) adhesive’s one which cures as soon as it enters in contact with air moisture. This cure process seems too sensitive to humidity and temperature and involves a too long time process for industrial applications. On the contrary the process for silicone cured by polyaddition is easy. Besides, the introduction of a few phenyl groups in dimethylsiloxane backbone makes the PDMS free from crystallisation ensuring the silicone flexibility in a higher use temperature range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-28

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.E. Mark; H.R. Allcock, West, R. Inorganic Polymer, 2nd ed.; Oxford University Press: New York, (2004).

Google Scholar

[2] W.A. Lee, R Rutherford, In Polymer Handbook, 2nd ed.; Brandrup, J.; Immergut, E. H., Eds.; Wiley-Interscience: New York, Vol 3, P. 139 (1975).

Google Scholar

[3] S.J. Clarson, K. Dodgson, J.A. Semlyen, Polymer, Vol 26, P. 930 (1985).

Google Scholar

[4] K.A. Andrianov, B. G. Zavin,.G. F. Sablina, Polym Sci, Vol 14, P. 1234 (1978).

Google Scholar

[5] I. Yilgor, J.S. Riffle, J. E. McGrath, In Reactive Oligomers; F.W. Harris, H.J. Spinelli, Eds.; American Chemical Society: Washington, DC, P. 161 (1985).

Google Scholar

[6] G. N. Babu, S.S. Christopher, R.A. Newmark, Macromolecules, Vol 20, P. 2654 (1987).

Google Scholar

[7] L. L Qu, G. S. Huang, Q. Wang; Z. J. Xie, J Polym Sci Part B: Polym Phys, Vol 46, P. 72 (2008).

Google Scholar

[8] S. Wang, J. E Mark, J Mater Sci, Vol 25, P. 65 (1990).

Google Scholar

[9] J. Comyn, J. Day, S. J Shaw, J. Adhes., Vol 66, P. 289 (1998).

Google Scholar

[10] J. Comyn, F. De Buyl, N.E. Shephard and C. Subramaniam, Int. J. Adhesion and Adhesives, Vol 22, P. 385, (2002).

DOI: 10.1016/s0143-7496(02)00019-2

Google Scholar

[11] J. Comyn, F. De Buyl and C. Subramaniam, Int. J. Adhesion and Adhesives, Vol 22, P. 331 (2002).

Google Scholar

[12] J. Comyn and F. De Buyl, Eur. Poly. J., Vol 37, P. 2385 (2001).

Google Scholar

[13] V. Nassiet, J. P. Habas, B. Hassoune-Rhabbour, Y Baziard and J A Petit, Journal of Applied Polymer Science, Vol 99 (3) (2006).

DOI: 10.1002/app.22540

Google Scholar

[14] H.H. Winter, Polymer Engineering and Science, Vol 27 (22), P. 1698 (1987).

Google Scholar

[15] L.R.G. Treloar, The Physics of Rubber Elasticity, Clarendon Press, Oxford (1975).

Google Scholar

[16] Y. Takeuchi, H. Inagaki, K. Tanaka, S. Yoshimura, Magnetic Resonance in Chemistry, Vol 27 (1), P. 72 (1989).

Google Scholar

[17] R Hu, V.L. Dimonie, M.S. El-Aasser, R.A. Pearson, A. Hiltner, S.G. Mylonakis, L. H Sperling,. J Polym Sci Part B: Polym Phys, Vol 35, P. 1501 (1997).

DOI: 10.1002/(sici)1099-0488(19970730)35:10<1501::aid-polb4>3.0.co;2-u

Google Scholar

[18] L. Qu, Z. Xie, G. Huang, Z. Tang, Journal of Polymer Science: Part B: Polymer Physics, Vol. 46, P. 1652 (2008).

Google Scholar

[19] B. Hassoune, V Nassiet, Y. Baziard, Mat. & Techniques, Vol. 2, PP. 123-132 (2009).

Google Scholar