Dispersion Improvement of Carbon Nanotubes in Epoxy Resin Using Amphiphilic Block Copolymers

Article Preview

Abstract:

Interface between Carbon NanoTubes (CNT) and epoxy matrix is admitted to play an important role in the dispersion quality and in the mechanical stress transfer. To improve the interfacial adhesion, we propose to chemically graft molecules onto CNT surface. To achieve this chemical modification, a controlled radical polymerization, named Nitroxide Mediated Polymerization NMP, is used to synthesize a diblock copolymer based on Acrylic Acid (PAA block) and Methyl MethAcrylate (PMMA block). In the present paper, this polymerization is performed “in situ”. The PAA block presents a good affinity with the CNT which enable grafting. The PMMA miscibility with epoxy is expected to give a good adhesion - between the CNT and the matrix - and to bring a better dispersion. In order to compare the chemical modification and the physical adsorption of the copolymers onto CNT dispersion, the same block copolymer was synthesized with and without CNT. The copolymer synthesis was controlled and characterized by different methods as NMR 1H (conversion and composition), SEC (molecular weight) and TGA (grafting density). We show that the better dispersion quality and better physical properties have been obtained with grafted CNT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-36

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Iijima S.: Nature. Vol. 354 (1991), pp.56-58.

Google Scholar

[2] Thostenson E.T., Z. Ren and T. -W. Chou: Composites Science and Technology. Vol. 61 (2001), p.1899-(1912).

Google Scholar

[3] Lau K.T. and D. Hui: Carbon. Vol. 40 (2002), pp.1605-1606.

Google Scholar

[4] Gojny F.H., M.H.G. Wichmann, U. Kopke, B. Fiedler and K. Schulte: Composites Science and Technology. Vol. 64 (2004), pp.2363-2371.

DOI: 10.1016/j.compscitech.2004.04.002

Google Scholar

[5] Thostenson E.T. and T. -W. Chou: Carbon. Vol. 44 (2006), pp.3022-3029.

Google Scholar

[6] Yaping Z., Z. Aibo, C. Qinghua, Z. Jiaoxia and N. Rongchang: Materials Science and Engineering A. Vol. 435-436 (2006), pp.145-149.

DOI: 10.1016/j.msea.2006.07.106

Google Scholar

[7] Lau K. -t., M. Lu, L. Chun-ki, H. -y. Cheung, F. -L. Sheng and H. -L. Li: Composites Science and Technology. Vol. 65 (2005), pp.719-725.

Google Scholar

[8] Guo P., X. Chen, X. Gao, H. Song and H. Shen: Composites Science and Technology. Vol. 67 (2007), pp.3331-3337.

Google Scholar

[9] Miyagawa H., M.J. Rich and L.T. Drzal: Thermochimica Acta. Vol. 442 (2006), pp.67-73.

Google Scholar

[10] Kim J.A., D.G. Seong, T.J. Kang and J.R. Youn: Carbon. Vol. 44 (2006), p.1898-(1905).

Google Scholar

[11] Gojny F.H. and K. Schulte: Composites Science and Technology. Vol. 64 (2004), pp.2303-2308.

Google Scholar

[12] Zhu J., J. Kim, H. Peng, J.L. Margrave, and al.: Nano Letters. Vol. 3 (2003), pp.1107-1113.

Google Scholar

[13] Gong X., J. Liu, S. Baskaran, R.D. Voise and J.S. Young: Chemistry of Materials. Vol. 12 (2000), pp.1049-1052.

Google Scholar

[14] Fidelus J.D., E. Wiesel, F.H. Gojny, K. Schulte and H.D. Wagner: Composites Part A: Applied Science and Manufacturing. Vol. 36 (2005), pp.1555-1561.

DOI: 10.1016/j.compositesa.2005.02.006

Google Scholar

[15] Cho J., I.M. Daniel and D.A. Dikin: Composites Part A: Applied Science and Manufacturing. Vol. 39 (2008), pp.1844-1850.

Google Scholar

[16] Shvartzman-Cohen R., M. Florent, D. Goldfarb, I. Szleifer and R. Yerushalmi-Rozen: Langmuir, Vol. 24 (2008) pp.4625-4632.

DOI: 10.1021/la703782g

Google Scholar

[17] Li Q., M. Zaiser and V. Koutsos: Physica Status Solidi (A) Applied Research. Vol. 201 (2004), p. R89-R91.

DOI: 10.1002/pssa.200409065

Google Scholar

[18] Datsyuk V., L. Billon, C. Guerret-Piécourt, S. Dagréou, N. Passade-Boupatt, S. Bourrigaud, O. Guerret and L. Couvreur: Journal of Nanomaterials. Vol. 2007 (2007), p.12 pages.

DOI: 10.1155/2007/74769

Google Scholar

[19] Datsyuk V., C. Guerret-Piecourt, S. Dagreou, L. Billon, J. -C. Dupin, E. Flahaut, A. Peigney and C. Laurent: Carbon. Vol. 43 (2005), pp.873-876.

DOI: 10.1016/j.carbon.2004.10.052

Google Scholar

[20] Housotte-Filbert C., C. Tondeur, H. -G. Riess, and al., Patent US 5681877. (1997).

Google Scholar

[21] Couvreur L., C. Lefay, J. Belleney, B. Charleux, O. Guerret and S. Magnet: Macromolecules. Vol. 36 (2003), pp.8260-8267.

DOI: 10.1021/ma035043p

Google Scholar

[22] Park S.J., M.S. Cho, S.T. Lim, H.J. Choi and M.S. Jhon: Macromolecular Rapid Communications. Vol. 24 (2003), pp.1070-1073.

Google Scholar

[23] Charleux B., J. Nicolas and O. Guerret: Macromolecules. Vol. 38 (2005), pp.5485-5492.

Google Scholar

[24] Dire C., B. Charleux, S. Magnet and L. Couvreur: Macromolecules. Vol. 40 (2007), pp.1897-03.

Google Scholar

[25] Guerret O., C. Guerret-Piécourt, L. Billon and V. Datsyuk, Patent WO 108485. (2005).

Google Scholar