[1]
M. Akaishi, S. Yamaoka, J. Tanaka, T. Ohsawa, O. Fukunaga, Synthesis of Sintered Diamond with High Electrical Resistivity and Hardness, J. Am. Ceram. Soc. 70 (1987) 237-239.
DOI: 10.1111/j.1151-2916.1987.tb04885.x
Google Scholar
[2]
M. Akaishi, S. Yamaoka, J. Tanaka, T. Ohsawa, O. Fukunaga, Synthesis of Sintered Diamond with a High Electrical Resistivity and High Hardness, Mater. Sci. and Eng. A. 105 (1988) 517-523.
DOI: 10.1016/0025-5416(88)90738-0
Google Scholar
[3]
M. Akaishi, T. Ohsawa, S. Yamaoka, Fukunaga, in: S. Saito et al. (eds. ), Science and Technology of New Diamond, Terra., Tokyo, 1990, pp.129-135.
Google Scholar
[4]
Y. S. KO, T. Tsurumi, O. Fukunaga, T. Yano, High pressure sintering of diamond-SiC Composite, J. Mater. Sci. 36 (2001) 469-475.
Google Scholar
[5]
H. Katzman, W. F. Libby, Sintered diamond compacts with a cobalt binder, Sci. 172 (1971) 1132–1134.
DOI: 10.1126/science.172.3988.1132
Google Scholar
[6]
B. Yao, A.M. Wang, B.Z. Ding, Z.Q. Hu, Y.Z. Geng, T. P. Lou, Study on structure of a new binding phase in polycrystalline diamond, J. Mater. Sci. Lett. 14 (1995) 931.
DOI: 10.1007/bf02427468
Google Scholar
[7]
S. M. Hong, M. Akaishi, H. Kanda, T. Osawa, Shinobu, Behaviour of cobalt infiltration and abnormal grain growth during sintering of diamond on cobalt substrate, J. Mater. Sci. Lett. 23 (1988) 3821–3826.
DOI: 10.1007/bf01106798
Google Scholar
[8]
S. M. Hong, M. Akaishi, H. Kanda, T. Osawa, Shinobu, Dissolution behaviour of fine particles of diamond under high pressure sintering conditions, J. Mater. Sci. Lett. 10 (1991) 164–166.
DOI: 10.1007/bf02352837
Google Scholar
[9]
R. N. Wentorf, Jr, W. A. Rocco, U. S. Putent 3, 745, 623, 17 (1973).
Google Scholar
[10]
A. Osipov, S. Nauyoks, T. Zerda, Rapid sintering of nano-diamond compacts, Diamond Relat. Mater. 18 (2009) 1061-1064.
DOI: 10.1016/j.diamond.2009.01.041
Google Scholar
[11]
H. Sumiya, T. Irifune, Indentation hardness of nanopolycrystalline diamond prepared from graphite by direct conversion, Diamond Relat. Mater. 13 (2004) 1771-1776.
DOI: 10.1016/j.diamond.2004.03.002
Google Scholar
[12]
H. Sumiya, K. Harano, T. Irifune, Ultrahard diamond indenter prepared from nanopolycrystalline diamond, Rev. Sci. Instrum. 79 (2008) 1-3.
DOI: 10.1063/1.2918985
Google Scholar
[13]
T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Ultrahard polycrystalline diamond from graphite, Nature. 421 (2003) 599-600.
DOI: 10.1038/421599b
Google Scholar
[14]
C. L. Guillou, F. Brunet, T. Irifune, H. Ohfuji, Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations, Carbon. 45(2007) 636-48.
DOI: 10.1016/j.carbon.2006.10.005
Google Scholar
[15]
H. Yusa, Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure, Diamond Relat. Mater. 11(2002) 87-91.
DOI: 10.1016/s0925-9635(01)00532-5
Google Scholar
[16]
N. Dubrovinskaia, L. Dubrovinsky, F. Langenhorst, Nanocrystalline diamond synthesized from C60, Diamond Relat. Mater. 14 (2005) 16-22.
DOI: 10.1016/j.diamond.2004.06.017
Google Scholar
[17]
J. Qian, C. Pantea, G. Voronin, T. W. Zerda, Partial graphitization of diamond crystals under high-pressure and high-temperature conditions, J. Appl. Phys. 90 (2001) 1632-1637.
DOI: 10.1063/1.1382832
Google Scholar