Experimental Studies of Submicron Polycrystalline Diamond without Binder under High Pressure and Temperature

Article Preview

Abstract:

This paper aims to study the sintering process and mechanical properties of submicron polycrystalline diamond (SMPD) without any secondary phases and binder materials under pressure of 7-8 GPa and 1400 °C-1800 °C, using the bi-layer assembly and the conventional assembly methods. The as prepared samples were characterized by X-ray diffraction, scanning electron microscope, and Vickers indenter hardness tests. Well sintered specimen was obtained under the condition of 8 GPa and 1600 °C using the bi-layer assembly method, and an indentation test demonstrated a Vickers hardness of 52 GPa. The graphitization of diamond was found to be an important factor determining the hardness of samples sintered using the bi-layer assembly.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

1238-1245

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Akaishi, S. Yamaoka, J. Tanaka, T. Ohsawa, O. Fukunaga, Synthesis of Sintered Diamond with High Electrical Resistivity and Hardness, J. Am. Ceram. Soc. 70 (1987) 237-239.

DOI: 10.1111/j.1151-2916.1987.tb04885.x

Google Scholar

[2] M. Akaishi, S. Yamaoka, J. Tanaka, T. Ohsawa, O. Fukunaga, Synthesis of Sintered Diamond with a High Electrical Resistivity and High Hardness, Mater. Sci. and Eng. A. 105 (1988) 517-523.

DOI: 10.1016/0025-5416(88)90738-0

Google Scholar

[3] M. Akaishi, T. Ohsawa, S. Yamaoka, Fukunaga, in: S. Saito et al. (eds. ), Science and Technology of New Diamond, Terra., Tokyo, 1990, pp.129-135.

Google Scholar

[4] Y. S. KO, T. Tsurumi, O. Fukunaga, T. Yano, High pressure sintering of diamond-SiC Composite, J. Mater. Sci. 36 (2001) 469-475.

Google Scholar

[5] H. Katzman, W. F. Libby, Sintered diamond compacts with a cobalt binder, Sci. 172 (1971) 1132–1134.

DOI: 10.1126/science.172.3988.1132

Google Scholar

[6] B. Yao, A.M. Wang, B.Z. Ding, Z.Q. Hu, Y.Z. Geng, T. P. Lou, Study on structure of a new binding phase in polycrystalline diamond, J. Mater. Sci. Lett. 14 (1995) 931.

DOI: 10.1007/bf02427468

Google Scholar

[7] S. M. Hong, M. Akaishi, H. Kanda, T. Osawa, Shinobu, Behaviour of cobalt infiltration and abnormal grain growth during sintering of diamond on cobalt substrate, J. Mater. Sci. Lett. 23 (1988) 3821–3826.

DOI: 10.1007/bf01106798

Google Scholar

[8] S. M. Hong, M. Akaishi, H. Kanda, T. Osawa, Shinobu, Dissolution behaviour of fine particles of diamond under high pressure sintering conditions, J. Mater. Sci. Lett. 10 (1991) 164–166.

DOI: 10.1007/bf02352837

Google Scholar

[9] R. N. Wentorf, Jr, W. A. Rocco, U. S. Putent 3, 745, 623, 17 (1973).

Google Scholar

[10] A. Osipov, S. Nauyoks, T. Zerda, Rapid sintering of nano-diamond compacts, Diamond Relat. Mater. 18 (2009) 1061-1064.

DOI: 10.1016/j.diamond.2009.01.041

Google Scholar

[11] H. Sumiya, T. Irifune, Indentation hardness of nanopolycrystalline diamond prepared from graphite by direct conversion, Diamond Relat. Mater. 13 (2004) 1771-1776.

DOI: 10.1016/j.diamond.2004.03.002

Google Scholar

[12] H. Sumiya, K. Harano, T. Irifune, Ultrahard diamond indenter prepared from nanopolycrystalline diamond, Rev. Sci. Instrum. 79 (2008) 1-3.

DOI: 10.1063/1.2918985

Google Scholar

[13] T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Ultrahard polycrystalline diamond from graphite, Nature. 421 (2003) 599-600.

DOI: 10.1038/421599b

Google Scholar

[14] C. L. Guillou, F. Brunet, T. Irifune, H. Ohfuji, Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations, Carbon. 45(2007) 636-48.

DOI: 10.1016/j.carbon.2006.10.005

Google Scholar

[15] H. Yusa, Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure, Diamond Relat. Mater. 11(2002) 87-91.

DOI: 10.1016/s0925-9635(01)00532-5

Google Scholar

[16] N. Dubrovinskaia, L. Dubrovinsky, F. Langenhorst, Nanocrystalline diamond synthesized from C60, Diamond Relat. Mater. 14 (2005) 16-22.

DOI: 10.1016/j.diamond.2004.06.017

Google Scholar

[17] J. Qian, C. Pantea, G. Voronin, T. W. Zerda, Partial graphitization of diamond crystals under high-pressure and high-temperature conditions, J. Appl. Phys. 90 (2001) 1632-1637.

DOI: 10.1063/1.1382832

Google Scholar