[1]
F. Meng, K. Tagashira, R. Azuma, H. Sohma, Role of Eta-Carbide Precipitations in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1, 4C Tool Steel by Cryogenic Treatment. In: ISIJ International. 34(1994) 205-210.
DOI: 10.2355/isijinternational.34.205
Google Scholar
[2]
P.F. Stratton, Optimizing Nano-carbide Precipitation in Tool Steels. In: Material Science and Engineering. 449-451(2007) 809-812.
DOI: 10.1016/j.msea.2006.01.162
Google Scholar
[3]
D.N. Collins, Cryogenic Treatment of Tool Steels. In: Advance Materials and Processes. 154(1998)23-29.
Google Scholar
[4]
D. Mohan Lal, S. Renganarayanan, A. Kalanidhi. Cryogenic Treatment to Augment Wear Resistance of Tool and Die Steel. In: Cryogenics. 41(2001)149-155.
DOI: 10.1016/s0011-2275(01)00065-0
Google Scholar
[5]
D. Yun, L. Xiaoping, X. Hongshen. Deep Cryogenic Treatment of High-speed Steel and its Mechanism. In: Heat Treatment of Metals. 3(1998)55-59.
DOI: 10.1179/174951508x358482
Google Scholar
[6]
R.F. Barron, Cryogenic Treatment of Metals to Improve Wear Resistance. In: Cryogenics. 22(1982)409-413.
DOI: 10.1016/0011-2275(82)90085-6
Google Scholar
[7]
J.Y. Huang, Y.T. Zhu, X.Z. Liao, I.J. Beyerlein, M.A. Bourke, T.E. Mitchell, Microstructure of Cryogenic Treated M2 Tool Steel. In: Science and Engineering. 339(2003) 241-244.
DOI: 10.1016/s0921-5093(02)00165-x
Google Scholar
[8]
C.H. Surberg, P. Stratton, K. Lingenhöle, The Effect of Some Heat Treatment Parameters on the Dimensional Stability of AISI D2. In: Cryogenics. 48(2008)42-47.
DOI: 10.1016/j.cryogenics.2007.10.002
Google Scholar
[9]
A.R. Jr. Franco, Obtenção de Revestimentos Dúplex por Nitretação a Plasma e PVD-TiN em Aços Ferramenta AISI D2 e AISI H13. In: Tese de Doutorado- USP, (2003).
DOI: 10.11606/t.3.2003.tde-02102003-114623
Google Scholar
[10]
R.C. Cozza, Estudo do Comportamento do Coeficiente de Desgaste e dos Modos de Desgaste Abrasivo em Ensaios de Desgaste Micro-abrasivo. In: Dissertação de Mestrado- USP, (2003).
DOI: 10.11606/d.3.2006.tde-31032008-101929
Google Scholar
[11]
R.C. Cozza, J.D.B. de Mello, D.K. Tanaka, R.M. Souza, Relationship Between Test Severity and Wear Mode Transition in Micro-Abrasive Wear Tests. In: Wear. 263(2007)111-116.
DOI: 10.1016/j.wear.2007.01.099
Google Scholar
[12]
R.I. Trezona, D.N. Allsopp, I.M. Hutchings, Transitions Between Two-body and Three-body Abrasive Wear: Influence of Test Conditions in the Microscale Abrasive Wear Test. In: Wear. 225-229 (1999)205-214.
DOI: 10.1016/s0043-1648(98)00358-5
Google Scholar
[13]
R.I. Trezona, I.M. Hutchings, Three-body Abrasive Wear Testing of Soft Materials. In. Wear. 233-235(1999)209-221.
DOI: 10.1016/s0043-1648(99)00183-0
Google Scholar
[14]
W.M. da Silva, R. Binder, J.D. B de Mello, Abrasive Wear of Steam-Treated Sintered Iron. In: Wear. 258(2004)166-177.
DOI: 10.1016/j.wear.2004.09.042
Google Scholar
[15]
D.A. Kelly, I.M. Hutchings, A New Method for Measurement of Particle Abrasivity. In: Wear. 250 (2001)76-80.
DOI: 10.1016/s0043-1648(01)00666-4
Google Scholar
[16]
G.R. Mariante, Efeito do Tratamento Criogênico nas Propriedades Mecânicas do Aço Rápido AISI M2. In: Dissertação de Mestrado- PPGEM-UFRGS, (1999).
DOI: 10.4013/ete.2009.53.12
Google Scholar
[17]
D. Yun, L. Xiaoping, X. Hongshen, Deep Cryogenic Treatment of High-speed Steel and Its Mechanism. In: Heat Treatment of Metals, 3 (1998) 55-59.
DOI: 10.1179/174951508x358482
Google Scholar
[18]
A.N. Popandopulo, L.T. Zhukova, Transformations in High speed Steels During Cold Treatment. In: Metal Science and Heat Treatment. 22(1981)708-710.
DOI: 10.1007/bf00700561
Google Scholar
[19]
P.L. Yen, Formation of Fine Eta Carbide in Special Cryogenic and Tempering Process Key to Improve Properties of Alloy Steels. In: Industrial Heating. 14(1997)40-44.
Google Scholar