Synthesis of Li2Fe0.5Mn0.5SiO4/C as Cathode Material for Lithium-Ion Batteries Using Amorphous Li2SiO3

Article Preview

Abstract:

A phase-pure cathode material (Li2Fe0.5Mn0.5SiO4/C) was successfully prepared by a solid-state reaction. Initially, components used amorphous Li2SiO3 obtained from a liquid phase by solidification, FeC2O4*2H2O, MnC2O4*2H2O and glucose as a carbon source. The structure of the prepared cathode material was investigated by X-ray diffraction (XRD), the content of Fe, Mn, Si by Energy-dispersive X-ray spectroscopy (EDX) method, Li content by atomic absorption spectroscopy (AAS), the particle size and morphology by scanning electron microscopy (SEM). XRD data show that the sample on the basis of orthorhombic unit cell can be attributed to Pmn21 space group. An analysis of SEM images showed average particles size of about 250 nm. Other results obtained (EDX, AAS) correspond approximately to the theoretical data. Electrochemical performance of the cathode material was gained from cycling between 1.5-4.8V. Discharge capacity after the first cycle reached 220 mAh/g.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

132-136

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Yan, S. Cai, L. Miao, X. Zhou, Y. Zhao, J. of Alloys and Compounds, 511, (2012), 101.

Google Scholar

[2] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J. -M. Tarascon, C. Masquelier, J. Electrochem. Soc. 152, (2005), A913–A921.

DOI: 10.1149/1.1884787

Google Scholar

[3] H. Huang, S.C. Yin, L.F. Nazar, Solid-State Lett., 4, (2001), A170–A172.

Google Scholar

[4] Z. Gong, Y. Yang, Energy Environ. Sci., 4, (2011), 3223.

Google Scholar

[5] R. Dominko, D.E. Conte, D. Hanzel, M. Gaberscek, J. Jamnik, J. of Power Sources, 178, (2008), 842.

DOI: 10.1016/j.jpowsour.2007.07.064

Google Scholar

[6] A. Nyten et al., Electrochemistry Communications, 7, (2005), 156.

Google Scholar

[7] S. Sun, Z. Wu, Journal of Chemical and Pharmaceutical Research, 6(4), (2014), 221-225.

Google Scholar

[8] R. Dominko, J. of Power Sources, 184, (2008), 468.

Google Scholar

[9] X. Huang, H. Chen, S. Zhou, et al., Electrochimica Acta 60, (2012), 239–243.

Google Scholar

[10] X. Wu, X. Wang, Y. Zhang, ACS Appl. Mater. Interfaces, 5, (2013), 2510−2516.

Google Scholar

[11] R. Malik, D. Burch, M. Bazant, etal., Nano Lett., 10 (10), (2010), 4123–4127.

Google Scholar

[12] X.Y. Fan, Y. Li, J.J. Wang, et al., Journal of Alloys and Compounds, 493, (2010), 77–80.

Google Scholar

[13] X. Kong, T. Mei, Z. Xing, et al., Int. J. Electrochem. Sci., 7, (2012), 5565 - 5573.

Google Scholar

[14] H.J. Guo, K.X. Xiang, X. Cao, et. al., trans. Nonferrous Met. Soc. China, 19, (2009), 166−169.

Google Scholar

[15] B. Huang, X. Zheng, M. Lu, Journal of Alloys and Compounds 525, (2012), 110–113.

Google Scholar

[16] J. Yang, X. Kang, L. Hu, et al., Journal of Alloys and Compounds, 572, (2013), 158–162.

Google Scholar

[17] C. Deng, S. Zhang, S.Y. Yang, et al., J. of Power Sources, 196, (2011), 386.

Google Scholar

[18] H. Hao, J. Wang, J. Liu, et al., J. of Power Sources, 210, (2012), 397.

Google Scholar

[19] J. Bai, Z. Gong, D. Lv, et. al., J. Mater. Chem., 22, (2012), 12128.

Google Scholar

[20] Z. L. Gong, Y. X. Li, Y. Yang, Electrochemical and Solid-State Letters, 9 (12), (2006), A542-A544.

Google Scholar

[21] Y.S. Jung, A.S. Cavanagh, A.C. Dillon, et. al., Journal of The Electrochemical Society, 157 (1), (2010), A75-A81.

Google Scholar

[22] H. C. M. Knoops, M. E. Donders, M. C. M. van de Sanden, et al., J. Vac. Sci. Technol. A 30(1), (2012).

Google Scholar

[23] Popovich A.A., Van Quing Shen, Material Science Issues, 2(74), (2013), 59-63.

Google Scholar