Electrochemical Properties of Chemically Etched-NbO2 as a Negative Electrode Material for Lithium Ion Batteries

Article Preview

Abstract:

The electrochemical properties niobium dioxide (NbO2) was investigated as a negative electrode material for lithium ion batteries. The NbO2 electrode showed a large irreversible capacity and small discharge capacity. The results of X-ray photoelectron spectroscopy indicate that the poor electrode performance of NbO2 may be caused by niobium pentoxide (Nb2O5) formed on the surface of active material. The Nb2O5 could be removed by chemical etching to some extent, thus improving the electrode performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

115-118

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. -F. Cui, Y. Yang, C. -M. Hsu, Y. Cui, Nano Lett. 9 (2009) 3370–3374.

Google Scholar

[2] X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L. A. Archer, Adv. Mater. 18 (2006) 2325–2329.

Google Scholar

[3] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon, Nature 407 (2000) 496–499.

DOI: 10.1038/35035045

Google Scholar

[4] A.S. Arico, P. Bruce, B. Scrosati, J-M. Tarascon, W.V. Schalkwijk, Nat. Mater. 4 (2005) 366–377.

Google Scholar

[5] M. Wei, K. Wei, M. Ichihara, H. Zhou, Electrochem. Commun. 10 (2008) 980–983.

Google Scholar

[6] Z. Jian, X. Lu, Z. Fang, Y. -S. Hu, J. Zhou, W. Chen, L. Chen, Electrochem. Commun. 13 (2011) 1127–1130.

Google Scholar

[7] I. Nowak, M. Ziolek, Chem. Rev. 99 (1999) 3603–3624.

Google Scholar

[8] Y.H. Cho, Y. -S. Kim, S. -K. Jeong, Proc. ICAE (2013) 134.

Google Scholar

[9] K. Edstrom, M. Herstedt, D.P. Abraham, J. Power Sources 153 (2006) 380–384.

Google Scholar

[10] H. Bryngelsson, M. Stjerndahl, T. Gustafsson, K. Edstrom, J. Power Sources 174 (2007) 970–975.

DOI: 10.1016/j.jpowsour.2007.06.050

Google Scholar

[11] S. -F. Zheng, J. -S. Hu, L. -S. Zhong, W. -G. Song, L. -J. Wan, Y. -G. Guo, Chem. Mater. 20 (2008) 3617–3622.

Google Scholar

[12] J. Hu, H. Li, X. Huang, L. Chen, Solid State Ionics 177 (2006) 2791–2799.

Google Scholar

[13] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Minnesota (1995).

Google Scholar

[14] K.T. Jacob, C. Shekhar, M. Vinay, Y. Waseda, J. Chem. Eng. Data 55 (2010) 4854–4863.

DOI: 10.1021/je1004609

Google Scholar

[15] D. Adler, Rev. Mod. Phys. 40 (1968) 714–736.

Google Scholar

[16] G. Li , X. Wang, Z. Chen, X. Ma, Y. Lu, Electrochim. Acta 102 (2013) 351–357.

Google Scholar

[17] L.M. Ferris, J. Chem. Eng. Data 11 (1966) 343–346.

Google Scholar

[18] A. Aspart, C.Z. Antoine, Appl. Surf. Sci. 227 (2004) 17–29.

Google Scholar