Investigation of Preparation and Thermoelectric Properties of Ca2.5La0.5Co4O9 Porous Ceramics

Article Preview

Abstract:

CO(NH2)2 as pore-former used to prepare porous Ca2.5La0.5Co4O9 thermoelectric materials by solid-state reaction technique.Microstructure,density and thermoelectric properties (temperature dependence of electrical resistivity,Seebeck coefficient) of the samples were studied in details.The results have shown that the porosity increases and the pore structure is improved with the pore-former content increasing,and electrical resistivity and density decrease while Seebeck coefficient raise.The improvement in electrical resistivity and Seebeck coefficient leads to higher power factor values at 913 K (around 1.32 mW/cm·K2) than undoped samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

98-101

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.M. Rowe, Thermoelectrics handbook: macro to nano, CRC Press, Boca Raton, (2006).

Google Scholar

[2] B. Poudel, Q. Hao, Y. Ma, Y.H. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, MS. Dresselhaus, G. Chen, Z.F. Ren, High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science. 320 (2008).

DOI: 10.1126/science.1156446

Google Scholar

[3] Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, GJ. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature. 473 (2011) 66-69.

DOI: 10.1038/nature09996

Google Scholar

[4] B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H.Z. Wang D.Z. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z.F. Ren, Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites, Nano. Lett. 12 (2012) 2077-(2082).

DOI: 10.1021/nl3003045

Google Scholar

[5] L.D. Zhao, J.Q. He, C.I. Wu, TP. Hogan, X.Y. Zhou, C. Uher, VP. Dravid, MG. Kanatzidis, Thermoelectrics with Earth Abundant Elements: High Performance p-type PbS Nanostructured with SrS and CaS, J. Am. Chem. Soc. 134 (2012) 7902-7912.

DOI: 10.1021/ja301772w

Google Scholar

[6] Y. Lee1, Shih-Han. Lo, C.Q. Chen, H. Sun, Duck-Young. Chung, TC. Chasapis, C. Uher, VP. Dravid, MG. Kanatzidis, Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide, Nat. Commun. 4640 (2014) 1-10.

DOI: 10.1038/ncomms4640

Google Scholar

[7] H.J. Goldsmid, Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation, Materials. 7 (2014) 2577-2592.

DOI: 10.3390/ma7042577

Google Scholar

[8] L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, VP. Dravid, MG. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature. 508 (2014) 373-377.

DOI: 10.1038/nature13184

Google Scholar

[9] I. Terasaki, Y. sasago, K. Uchionkura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B. 56 (1997) R12685-R12687.

Google Scholar

[10] K. Nagasawa, S. Daviero-Minaud, N. Preux, A. Rolle, P. Roussel, H. Nakatsugawa, O. Mentre, Ca3Co4O9-δ: A Thermoelectric Material for SOFC Cathode, Chem. Mater. 21 (2009) 4738-4745.

DOI: 10.1021/cm902040v

Google Scholar

[11] M.A. Madrea, F.M. Costa, N.M. Ferreira, A. Sotelo, M.A. Torres, G. Constantinescu, Sh. Rasekh, J.C. Diez, Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method, J. Eur. Cram. Soc. 33 (2013) 1747-1754.

DOI: 10.1016/j.jeurceramsoc.2013.01.029

Google Scholar

[12] M. Schrade, H. Fjeld, T.G. Finstad, T. Norby, Electronic Transport Properties of [Ca2CoO3−δ]q[CoO2], J. Phys. Chem. C. 118 (2014) 2908-2918.

DOI: 10.1021/jp409581n

Google Scholar

[13] H. Ohta, K. Sugiura, K. Koumoto, Recent Progress in Oxide Thermoelectric Materials: p-Type Ca3Co4O9 and n-Type SrTiO3, Inorg. Chem. 47 (2008) 8429-8436.

DOI: 10.1021/ic800644x

Google Scholar

[14] J. He, Y.F. Liu, R. Funahashi, Oxide thermoelectrics: The challenges, progress, and outlook, J. Mater. Res. 26 (2011) 1763-1722.

Google Scholar

[15] D. Kenfaui, D. Chateigner, M. Gomina, J.G. Noudem, Anisotropy of the Mechanical and Thermoelectric Properties of Hot-Pressed Single-Layer and Multilayer Thick Ca3Co4O9 Ceramics, Int. J. Appl. Ceram. Technol. 8 (2011) 214-226.

DOI: 10.1111/j.1744-7402.2009.02431.x

Google Scholar

[16] D. Kenfaui , G. Bonnefont, D. Chateigner, G. Fantozzi, M. Gomina, J.G. Noudem, Ca3Co4O9 ceramics consolidated by SPS process: Optimisation of mechanical and thermoelectric properties, Mater. Res. Bull. 45 (2010) 1240-1249.

DOI: 10.1016/j.materresbull.2010.05.006

Google Scholar

[17] T.F. Yin, D.W. Liu, Y. Ou, F.Y. Ma, S.H. Xie, J.F. Li, J.Y. Li, Nanocrystalline Thermoelectric Ca3Co4O9 Ceramics by Sol-Gel Based Electrospinning and Spark Plasma Sintering, J. Phys. Chem. C. 114 (2010) 10061-10065.

DOI: 10.1021/jp1024872

Google Scholar

[18] G.Y. Xu, T.J. Chen, J.Q. Liu, Z.J. Zhou, Thermoelectric properties of porous (Bi0. 15Sb0. 85)2Te3 thermoelectric materials, J. Univ. Sci. Technol. Beijing. 10 (2003) 30-43.

Google Scholar

[19] H.J. Goldsmid, Porous Thermoelectric Materials, Materials. 2 (2009) 903-910.

Google Scholar

[20] J.Y. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z.Y. Huo, TP. Russell, P.D. Yang, Holey Silicon as an Efficient Thermoelectric Material, Nano. Lett. 10 (2010) 4279-4283.

DOI: 10.1021/nl102931z

Google Scholar

[21] RH. Tarkhanyan, DG. Niarchos, Reduction of thermal conductivity in porous gray, materials, Appl. Materials. 2 (2014) 076107-1-076107-7.

DOI: 10.1063/1.4886220

Google Scholar