[1]
D.M. Rowe, Thermoelectrics handbook: macro to nano, CRC Press, Boca Raton, (2006).
Google Scholar
[2]
B. Poudel, Q. Hao, Y. Ma, Y.H. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, MS. Dresselhaus, G. Chen, Z.F. Ren, High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science. 320 (2008).
DOI: 10.1126/science.1156446
Google Scholar
[3]
Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, GJ. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature. 473 (2011) 66-69.
DOI: 10.1038/nature09996
Google Scholar
[4]
B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H.Z. Wang D.Z. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z.F. Ren, Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites, Nano. Lett. 12 (2012) 2077-(2082).
DOI: 10.1021/nl3003045
Google Scholar
[5]
L.D. Zhao, J.Q. He, C.I. Wu, TP. Hogan, X.Y. Zhou, C. Uher, VP. Dravid, MG. Kanatzidis, Thermoelectrics with Earth Abundant Elements: High Performance p-type PbS Nanostructured with SrS and CaS, J. Am. Chem. Soc. 134 (2012) 7902-7912.
DOI: 10.1021/ja301772w
Google Scholar
[6]
Y. Lee1, Shih-Han. Lo, C.Q. Chen, H. Sun, Duck-Young. Chung, TC. Chasapis, C. Uher, VP. Dravid, MG. Kanatzidis, Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide, Nat. Commun. 4640 (2014) 1-10.
DOI: 10.1038/ncomms4640
Google Scholar
[7]
H.J. Goldsmid, Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation, Materials. 7 (2014) 2577-2592.
DOI: 10.3390/ma7042577
Google Scholar
[8]
L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, VP. Dravid, MG. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature. 508 (2014) 373-377.
DOI: 10.1038/nature13184
Google Scholar
[9]
I. Terasaki, Y. sasago, K. Uchionkura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B. 56 (1997) R12685-R12687.
Google Scholar
[10]
K. Nagasawa, S. Daviero-Minaud, N. Preux, A. Rolle, P. Roussel, H. Nakatsugawa, O. Mentre, Ca3Co4O9-δ: A Thermoelectric Material for SOFC Cathode, Chem. Mater. 21 (2009) 4738-4745.
DOI: 10.1021/cm902040v
Google Scholar
[11]
M.A. Madrea, F.M. Costa, N.M. Ferreira, A. Sotelo, M.A. Torres, G. Constantinescu, Sh. Rasekh, J.C. Diez, Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method, J. Eur. Cram. Soc. 33 (2013) 1747-1754.
DOI: 10.1016/j.jeurceramsoc.2013.01.029
Google Scholar
[12]
M. Schrade, H. Fjeld, T.G. Finstad, T. Norby, Electronic Transport Properties of [Ca2CoO3−δ]q[CoO2], J. Phys. Chem. C. 118 (2014) 2908-2918.
DOI: 10.1021/jp409581n
Google Scholar
[13]
H. Ohta, K. Sugiura, K. Koumoto, Recent Progress in Oxide Thermoelectric Materials: p-Type Ca3Co4O9 and n-Type SrTiO3, Inorg. Chem. 47 (2008) 8429-8436.
DOI: 10.1021/ic800644x
Google Scholar
[14]
J. He, Y.F. Liu, R. Funahashi, Oxide thermoelectrics: The challenges, progress, and outlook, J. Mater. Res. 26 (2011) 1763-1722.
Google Scholar
[15]
D. Kenfaui, D. Chateigner, M. Gomina, J.G. Noudem, Anisotropy of the Mechanical and Thermoelectric Properties of Hot-Pressed Single-Layer and Multilayer Thick Ca3Co4O9 Ceramics, Int. J. Appl. Ceram. Technol. 8 (2011) 214-226.
DOI: 10.1111/j.1744-7402.2009.02431.x
Google Scholar
[16]
D. Kenfaui , G. Bonnefont, D. Chateigner, G. Fantozzi, M. Gomina, J.G. Noudem, Ca3Co4O9 ceramics consolidated by SPS process: Optimisation of mechanical and thermoelectric properties, Mater. Res. Bull. 45 (2010) 1240-1249.
DOI: 10.1016/j.materresbull.2010.05.006
Google Scholar
[17]
T.F. Yin, D.W. Liu, Y. Ou, F.Y. Ma, S.H. Xie, J.F. Li, J.Y. Li, Nanocrystalline Thermoelectric Ca3Co4O9 Ceramics by Sol-Gel Based Electrospinning and Spark Plasma Sintering, J. Phys. Chem. C. 114 (2010) 10061-10065.
DOI: 10.1021/jp1024872
Google Scholar
[18]
G.Y. Xu, T.J. Chen, J.Q. Liu, Z.J. Zhou, Thermoelectric properties of porous (Bi0. 15Sb0. 85)2Te3 thermoelectric materials, J. Univ. Sci. Technol. Beijing. 10 (2003) 30-43.
Google Scholar
[19]
H.J. Goldsmid, Porous Thermoelectric Materials, Materials. 2 (2009) 903-910.
Google Scholar
[20]
J.Y. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z.Y. Huo, TP. Russell, P.D. Yang, Holey Silicon as an Efficient Thermoelectric Material, Nano. Lett. 10 (2010) 4279-4283.
DOI: 10.1021/nl102931z
Google Scholar
[21]
RH. Tarkhanyan, DG. Niarchos, Reduction of thermal conductivity in porous gray, materials, Appl. Materials. 2 (2014) 076107-1-076107-7.
DOI: 10.1063/1.4886220
Google Scholar