[1]
X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc. 24 (2004) 1-10.
Google Scholar
[2]
C.H. Lee, H.K. Kim, H.S. Choi, H.S. Ahn, Phase transformation and bond coat oxidation behavior of plasma-sprayed zirconia thermal barrier coating, Surf. Coat. Technol. 24 (2001) 1-12.
DOI: 10.1016/s0257-8972(99)00517-4
Google Scholar
[3]
Z.H. Han, B.S. Xu, H.J. Wang, S.K. Zhou, Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N and Cr–Al–Si–N coatings by a hybrid coating system, Surf. Coat. Technol. 201 (2007) 5253-5256.
DOI: 10.1016/j.surfcoat.2006.07.118
Google Scholar
[4]
J.Y. Moon, H.S. Choi, H.J. Kim, C.H. Lee, The Effects of Heat. Treatment on sprayed stabilized ZrO2 coatings, Surf. Coat. Technol. 155 (2002) 1-10.
DOI: 10.1016/s0257-8972(01)01661-9
Google Scholar
[5]
S.Y. Parka, J.H. Kim, M.C. Kim, H.S. Songc, C.G. Parka, Microscopic observation of degradation behavior in yttria and ceria stabilized zirconia thermal barrier coatings under hot corrosion, Surf. Coat. Technol. 190 (2005) 357-365.
DOI: 10.1016/j.surfcoat.2004.04.065
Google Scholar
[6]
R.V. Mangalaraja, B.K. Chandrasekhar, P. Manohar, Effect of ceria on the physical, mechanical and thermal properties of yttria stabilized zirconia toughened alumina, Mater. Sci. Eng. A. 343 (2003) 71-75.
DOI: 10.1016/s0921-5093(02)00368-4
Google Scholar
[7]
X. Huang, D.M. Wang, M. Lamontagne, C. Moreau, Experimental study of the thermal conductivity of metal oxides Co-doped yttria stabilized zirconia, Mater. Sci. Eng. B. 149 (2008) 63-72.
DOI: 10.1016/j.mseb.2007.12.010
Google Scholar
[8]
V.R. Mastelaro, V. Briois, D.P. F de Souza, C.L. Silva, Structural studies of a ZrO2-CeO2 doped System, J. Eur. Ceram. Soc. (2003) 273-282.
DOI: 10.1016/s0955-2219(02)00188-7
Google Scholar
[9]
M. Iuga1, G. Steinle-Neumann, J. Meinhardt, Ab-initio simulation of elastic constants for some ceramic materials, Eur. Phys. J. B. 58 (2007) 127-133.
DOI: 10.1140/epjb/e2007-00209-1
Google Scholar
[10]
G. Balducci, J. Kaspar, P. Fornasiero, M. Graziani, Surface and reduction energetics of the CeO2-ZrO2 catalysts, J. Phys. Chem. B. 101 (1997) 1750-1753.
Google Scholar
[11]
Z.X. Yang, G.X. Luo, Z.S. Lu, T.K. Woo, Structural and electronic properties of NM-doped ceria (NM= Pt, Rh): a first-principles study, J. Phys. Condens. Matter. 20 (2008) 035210.
DOI: 10.1088/0953-8984/20/03/035210
Google Scholar
[12]
V. Milman, A. Perlov, K. Refson, S.J. Clark, J. Gavartin, B. Winkler, Structural, electronic and vibrational properties of tetragonal zirconia under pressure: a density functional theory study, J. Phys. Condens. Matter. 21 (2009) 485404.
DOI: 10.1088/0953-8984/21/48/485404
Google Scholar
[13]
R. Devanathan, W.J. Weber, S.C. Singhal, J.D. Gale, Computer simulation of defects and oxygen transport in yttria-stabilized zirconia, Solid State Ionics. 177 (2006) 1251-1258.
DOI: 10.1016/j.ssi.2006.06.030
Google Scholar
[14]
S. Gadag, G. Subbarayan, Thermo-elastic properties of dense YSZ and porous Ni-ZrO2 monolithic and isotropic materials, J. Mater. Sci. 41 (2006) 1221-1232.
DOI: 10.1007/s10853-005-3660-6
Google Scholar
[15]
A. Eichler, Tetragonal Y-doped zirconia: structure and ion conductivity, Phys. Rev. B. 64 (2001) 1-8.
Google Scholar
[16]
V. Milan, B. Winker, J.A. White, C.J. Packard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum. Chem. 77 (2002) 895-910.
DOI: 10.1002/(sici)1097-461x(2000)77:5<895::aid-qua10>3.0.co;2-c
Google Scholar
[17]
B.G. Pfrommer, M. Cóté, S.G. Louie, M.L. Cohen, relaxation of crystals with the quasi-newton method, J. Comput. Phys. 131 (1997) 233-240.
DOI: 10.1006/jcph.1996.5612
Google Scholar
[18]
C.W. Kuo, Y.H. Lee, K.Z. Fung, M.C. Wang, Addition on the phase transition and growth of YSZ nanocrystallites prepared by a solgel process, J. Non-Cryst. Solids. 351 (2005) 304-311.
DOI: 10.1016/j.jnoncrysol.2004.11.002
Google Scholar
[19]
M. Mattesini, R. Ahuja, B. Johansson, Cibic Hf3N4 and Zr3N4: A class of hard materals, Phys. Rev. B. 68 (2003) 1-5.
Google Scholar
[20]
Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B. 76 (2007) 1-15.
Google Scholar
[21]
D.W. Liu, C.H. Perry, A.A. Feinberg, R. Currat, Neutron-scattering studies of phonons in disordered cubic zirconia at elevated temperatures, Phys. Rev. B. 36 (1987) 9212-9218.
DOI: 10.1103/physrevb.36.9212
Google Scholar
[22]
S. Ahmet, A. Alan, Strength and toughness of tape-cast yttria-stabilized zirconia, J. Am. Ceram. Soc. 83 (2000) 2029-(2035).
DOI: 10.1111/j.1151-2916.2000.tb01507.x
Google Scholar
[23]
M. Alfano, G.D. Girolamo, L. Pagnotta, D. Sun, Processing, microstructure and mechanical properties of air plasma-sprayed ceria–yttria costabilized zirconia coatings, Strain. 46 (2010) 409-418.
DOI: 10.1111/j.1475-1305.2009.00659.x
Google Scholar
[24]
S.M. Aouadi, Structural and mechanical properties of TaZrN films: experimental and ab Initio studies & quot, J. Appl. Phys. 99 (2006) 1-13.
DOI: 10.1063/1.2178394
Google Scholar
[25]
R. Shein, K.I. Shein, A. L, Ivanovskii, Elastic and electronic properties and stability of SrThO3, SrZrO3 and ThO2 from first principles, J. Nucl. Mater. 361 (2007) 69-77.
DOI: 10.1016/j.jnucmat.2006.11.003
Google Scholar
[26]
F. Marinelli, A. Lichanot, Elastic constants and electronic structure of alkaline-earth chalcogenides. Performances of various hamiltonians, Chem. Phys. Lett. 367 (2003) 430-438.
DOI: 10.1016/s0009-2614(02)01698-6
Google Scholar
[27]
N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Sci. 296 (2002) 280-284.
DOI: 10.1126/science.1068609
Google Scholar
[28]
D. Sanchez-Portal, E. Artacho, J.M. Soler, Projection of plane-wave calculations into atomic orbitals, Solid State Commun. 95 (1995) 685-690.
DOI: 10.1016/0038-1098(95)00341-x
Google Scholar
[29]
F.M. Gao, J.L. He, E. D Wu, S.M. Liu, D. L Yu, D. C Li, S. Y Zhang, Y.J. Tian, Hardness of covalent crystals, Phys. Rev. Lett. 91 (2003) 1-4.
DOI: 10.1103/physrevlett.91.015502
Google Scholar
[30]
R. Vassen, X.Q. Cao, F. Tietz, D. Basu, D. Stöver, Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc. 83 (2000) 2023-(2028).
DOI: 10.1111/j.1151-2916.2000.tb01506.x
Google Scholar
[31]
D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163-164 (2003) 67-74.
DOI: 10.1016/s0257-8972(02)00593-5
Google Scholar
[32]
D.G. Gahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B. 46 (1992) 6131-6140.
DOI: 10.1103/physrevb.46.6131
Google Scholar
[33]
C. Kittel, Thermal Physics, New York, Wiley, (1997).
Google Scholar
[34]
A. Kuwabara, S. Yokota, Y. Ikuhara, T. Sakuma, Local bonding states of titanium and germanium-doped tetragonal zirconia polycrystal and their correlation to high temperature ductility, Mater. Trans. 43 (2002) 2468-2472.
DOI: 10.2320/matertrans.43.2468
Google Scholar