Effect of Ce Substitution on Mechanical and Thermal Properties of Tetragonal YSZ: First-Principles Calculations

Article Preview

Abstract:

The effect of impurity Ce on the mechanical and thermal properties of tetragonal ZrO2 stabilized by rare earth element Y (YSZ) have been studied using first principles density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. The predicted elastic constants indicate that YSZ and Ce doped YSZ (CeYSZ) are mechanically stable structures. And then the numerical estimates of bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, sound velocity and minimum thermal conductivity were performed using the calculated elastic constants and analyzed for the first time. The values of sound velocity from different orientations are also reported. The agreement between the results of the available experiments and our calculations was satisfactory. Our calculated results indicate that Young’s modulus, hardness, mean sound velocity and minimum thermal conductivity of YSZ can be decreased by Ce substitution. The reasons are from the “softened” Ce-O bond strength using bond population and relative volume change under external hydrostatic pressure. Chemical bonding nature was also analyzed from the density of states and electron density difference.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

73-84

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc. 24 (2004) 1-10.

Google Scholar

[2] C.H. Lee, H.K. Kim, H.S. Choi, H.S. Ahn, Phase transformation and bond coat oxidation behavior of plasma-sprayed zirconia thermal barrier coating, Surf. Coat. Technol. 24 (2001) 1-12.

DOI: 10.1016/s0257-8972(99)00517-4

Google Scholar

[3] Z.H. Han, B.S. Xu, H.J. Wang, S.K. Zhou, Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N and Cr–Al–Si–N coatings by a hybrid coating system, Surf. Coat. Technol. 201 (2007) 5253-5256.

DOI: 10.1016/j.surfcoat.2006.07.118

Google Scholar

[4] J.Y. Moon, H.S. Choi, H.J. Kim, C.H. Lee, The Effects of Heat. Treatment on sprayed stabilized ZrO2 coatings, Surf. Coat. Technol. 155 (2002) 1-10.

DOI: 10.1016/s0257-8972(01)01661-9

Google Scholar

[5] S.Y. Parka, J.H. Kim, M.C. Kim, H.S. Songc, C.G. Parka, Microscopic observation of degradation behavior in yttria and ceria stabilized zirconia thermal barrier coatings under hot corrosion, Surf. Coat. Technol. 190 (2005) 357-365.

DOI: 10.1016/j.surfcoat.2004.04.065

Google Scholar

[6] R.V. Mangalaraja, B.K. Chandrasekhar, P. Manohar, Effect of ceria on the physical, mechanical and thermal properties of yttria stabilized zirconia toughened alumina, Mater. Sci. Eng. A. 343 (2003) 71-75.

DOI: 10.1016/s0921-5093(02)00368-4

Google Scholar

[7] X. Huang, D.M. Wang, M. Lamontagne, C. Moreau, Experimental study of the thermal conductivity of metal oxides Co-doped yttria stabilized zirconia, Mater. Sci. Eng. B. 149 (2008) 63-72.

DOI: 10.1016/j.mseb.2007.12.010

Google Scholar

[8] V.R. Mastelaro, V. Briois, D.P. F de Souza, C.L. Silva, Structural studies of a ZrO2-CeO2 doped System, J. Eur. Ceram. Soc. (2003) 273-282.

DOI: 10.1016/s0955-2219(02)00188-7

Google Scholar

[9] M. Iuga1, G. Steinle-Neumann, J. Meinhardt, Ab-initio simulation of elastic constants for some ceramic materials, Eur. Phys. J. B. 58 (2007) 127-133.

DOI: 10.1140/epjb/e2007-00209-1

Google Scholar

[10] G. Balducci, J. Kaspar, P. Fornasiero, M. Graziani, Surface and reduction energetics of the CeO2-ZrO2 catalysts, J. Phys. Chem. B. 101 (1997) 1750-1753.

Google Scholar

[11] Z.X. Yang, G.X. Luo, Z.S. Lu, T.K. Woo, Structural and electronic properties of NM-doped ceria (NM= Pt, Rh): a first-principles study, J. Phys. Condens. Matter. 20 (2008) 035210.

DOI: 10.1088/0953-8984/20/03/035210

Google Scholar

[12] V. Milman, A. Perlov, K. Refson, S.J. Clark, J. Gavartin, B. Winkler, Structural, electronic and vibrational properties of tetragonal zirconia under pressure: a density functional theory study, J. Phys. Condens. Matter. 21 (2009) 485404.

DOI: 10.1088/0953-8984/21/48/485404

Google Scholar

[13] R. Devanathan, W.J. Weber, S.C. Singhal, J.D. Gale, Computer simulation of defects and oxygen transport in yttria-stabilized zirconia, Solid State Ionics. 177 (2006) 1251-1258.

DOI: 10.1016/j.ssi.2006.06.030

Google Scholar

[14] S. Gadag, G. Subbarayan, Thermo-elastic properties of dense YSZ and porous Ni-ZrO2 monolithic and isotropic materials, J. Mater. Sci. 41 (2006) 1221-1232.

DOI: 10.1007/s10853-005-3660-6

Google Scholar

[15] A. Eichler, Tetragonal Y-doped zirconia: structure and ion conductivity, Phys. Rev. B. 64 (2001) 1-8.

Google Scholar

[16] V. Milan, B. Winker, J.A. White, C.J. Packard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum. Chem. 77 (2002) 895-910.

DOI: 10.1002/(sici)1097-461x(2000)77:5<895::aid-qua10>3.0.co;2-c

Google Scholar

[17] B.G. Pfrommer, M. Cóté, S.G. Louie, M.L. Cohen, relaxation of crystals with the quasi-newton method, J. Comput. Phys. 131 (1997) 233-240.

DOI: 10.1006/jcph.1996.5612

Google Scholar

[18] C.W. Kuo, Y.H. Lee, K.Z. Fung, M.C. Wang, Addition on the phase transition and growth of YSZ nanocrystallites prepared by a solgel process, J. Non-Cryst. Solids. 351 (2005) 304-311.

DOI: 10.1016/j.jnoncrysol.2004.11.002

Google Scholar

[19] M. Mattesini, R. Ahuja, B. Johansson, Cibic Hf3N4 and Zr3N4: A class of hard materals, Phys. Rev. B. 68 (2003) 1-5.

Google Scholar

[20] Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B. 76 (2007) 1-15.

Google Scholar

[21] D.W. Liu, C.H. Perry, A.A. Feinberg, R. Currat, Neutron-scattering studies of phonons in disordered cubic zirconia at elevated temperatures, Phys. Rev. B. 36 (1987) 9212-9218.

DOI: 10.1103/physrevb.36.9212

Google Scholar

[22] S. Ahmet, A. Alan, Strength and toughness of tape-cast yttria-stabilized zirconia, J. Am. Ceram. Soc. 83 (2000) 2029-(2035).

DOI: 10.1111/j.1151-2916.2000.tb01507.x

Google Scholar

[23] M. Alfano, G.D. Girolamo, L. Pagnotta, D. Sun, Processing, microstructure and mechanical properties of air plasma-sprayed ceria–yttria costabilized zirconia coatings, Strain. 46 (2010) 409-418.

DOI: 10.1111/j.1475-1305.2009.00659.x

Google Scholar

[24] S.M. Aouadi, Structural and mechanical properties of TaZrN films: experimental and ab Initio studies & quot, J. Appl. Phys. 99 (2006) 1-13.

DOI: 10.1063/1.2178394

Google Scholar

[25] R. Shein, K.I. Shein, A. L, Ivanovskii, Elastic and electronic properties and stability of SrThO3, SrZrO3 and ThO2 from first principles, J. Nucl. Mater. 361 (2007) 69-77.

DOI: 10.1016/j.jnucmat.2006.11.003

Google Scholar

[26] F. Marinelli, A. Lichanot, Elastic constants and electronic structure of alkaline-earth chalcogenides. Performances of various hamiltonians, Chem. Phys. Lett. 367 (2003) 430-438.

DOI: 10.1016/s0009-2614(02)01698-6

Google Scholar

[27] N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Sci. 296 (2002) 280-284.

DOI: 10.1126/science.1068609

Google Scholar

[28] D. Sanchez-Portal, E. Artacho, J.M. Soler, Projection of plane-wave calculations into atomic orbitals, Solid State Commun. 95 (1995) 685-690.

DOI: 10.1016/0038-1098(95)00341-x

Google Scholar

[29] F.M. Gao, J.L. He, E. D Wu, S.M. Liu, D. L Yu, D. C Li, S. Y Zhang, Y.J. Tian, Hardness of covalent crystals, Phys. Rev. Lett. 91 (2003) 1-4.

DOI: 10.1103/physrevlett.91.015502

Google Scholar

[30] R. Vassen, X.Q. Cao, F. Tietz, D. Basu, D. Stöver, Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc. 83 (2000) 2023-(2028).

DOI: 10.1111/j.1151-2916.2000.tb01506.x

Google Scholar

[31] D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163-164 (2003) 67-74.

DOI: 10.1016/s0257-8972(02)00593-5

Google Scholar

[32] D.G. Gahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B. 46 (1992) 6131-6140.

DOI: 10.1103/physrevb.46.6131

Google Scholar

[33] C. Kittel, Thermal Physics, New York, Wiley, (1997).

Google Scholar

[34] A. Kuwabara, S. Yokota, Y. Ikuhara, T. Sakuma, Local bonding states of titanium and germanium-doped tetragonal zirconia polycrystal and their correlation to high temperature ductility, Mater. Trans. 43 (2002) 2468-2472.

DOI: 10.2320/matertrans.43.2468

Google Scholar