Effect of Sc, Y, Yb, Hf, Ce on Mechanical and Thermal Properties of La2Zr2O7: First-Principles Calculations

Article Preview

Abstract:

In order to achieve better understanding of the effect of dopant (Sc, Y, Yb, Hf and Ce) on elastic stiffness and thermal properties of La2Zr2O7. The related calculations were performed using the first principles methods. The predicted elastic constants indicate that La2Zr2O7 and oxidations-La2Zr2O7 (oxidations refer to Sc2O3, Y2O3, Yb2O3, HfO2 and CeO2) are mechanically stable structures. And then the numerical estimates of bulk modulus, shear modulus, Young’s modulus were performed using the calculated elastic constants. After these mechanical properties are obtained, sound velocity, Debye temperature and theoretical minimum thermal conductivity of La2Zr2O7 and oxidations-La2Zr2O7 are calculated and analyzed in detail. The available experimental results and our calculations are basically satisfactory. The calculated results indicate that Young’s modulus, mean sound velocity, Debye temperature and minimum thermal conductivity of La2Zr2O7 can be decreased by dopants. CeO2 has extraordinary ability to decrease thermal conductivity in these dopant oxidations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

85-93

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.B. Chen, Yttria-Stablized zirconia thermal barrier coatings-A Review, Surf. Rev. Lett. 13 (2006) 535-544.

DOI: 10.1142/s0218625x06008670

Google Scholar

[2] H. Chen, X.M. Zhou, C.X. Ding, Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating, J. Eur. Ceram. Soc. 23 (2003) 1449-1455.

DOI: 10.1016/s0955-2219(02)00345-x

Google Scholar

[3] C.G. Zhou, N. Wang, Z.B. Wang, Thermal cycling life and thermal diffusivity of a plasma-sprayed nanostructured thermal barrier coating, Scripta Mater, 51 (2004) 945-948.

DOI: 10.1016/j.scriptamat.2004.07.024

Google Scholar

[4] R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stöver. Zirconates as new materials for thermal barrier coatings, J Am Ceram Soc, 83 (2000) 2023-(2028).

DOI: 10.1111/j.1151-2916.2000.tb01506.x

Google Scholar

[5] B. Liu, J.Y. Wang, Y.C. Zhou, T. Liao, F.Z. Li, Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore, Acta. Mater. 55 (2007): 2949-2957.

DOI: 10.1016/j.actamat.2006.12.035

Google Scholar

[6] H.Z. Yao, L. Ouyang, W.Y. Ching, Ab initio calculation of the elastic constants of ceramic crystals, J. Am. Ceram. Soc, 90 (2007) 3194-3204.

DOI: 10.1111/j.1551-2916.2007.01931.x

Google Scholar

[7] R.V. Mangalaraja, B.K. Chandrasekhar, P. Manohar, Effect of ceria on the physical, mechanical and thermal properties of yttria stabilized zirconia toughened alumina, Mater. Sci. Eng. A, 343 (2003) 71-75.

DOI: 10.1016/s0921-5093(02)00368-4

Google Scholar

[8] Y. Tabira, R.L. Withers, L. Minervini, R. Grimes, Systematic structural change in selected rare earth oxide pyrochlores as determined by wide-angle CBED and a comparison with the results of atomistic computer simulation. J. Solid. State. Chem. (2000).

DOI: 10.1006/jssc.2000.8712

Google Scholar

[9] B. Liu, J.Y. Wang, F.Z. Li, Y.C. Zhou, Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T=Ge, Ti, Sn, Zr, Hf) pyrochlore, Acta Mater. 58 (2010) 4369-4377.

DOI: 10.1016/j.actamat.2010.04.031

Google Scholar

[10] A. Chartier, C. Meis, W.J. Weber, L.R. Corrales, Theoretical study of disorder in Ti-substituted La2Zr2O7, Phys. Rev. B. 65 (2002) 1-10.

Google Scholar

[11] H.J. Deiseroth, H.K. Mueller-Buschbaum, B. Ein, Pyrochlorstruktur an La2Zr2O7, Z. anorg. allg. Chem. 375 (1970) 152-156.

DOI: 10.1002/zaac.19703750205

Google Scholar

[12] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP Code, J. Phys. Condens. Matter, 14 (2002) 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[13] J. Feng, B. Xiao, C.L. Wan, Z.X. Qua, Z.C. Huang, J.C. Chen, R. Zhou, W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) Pyrochlore, Acta. Mater. 59 (2011) 1742-1760.

DOI: 10.1016/j.actamat.2010.11.041

Google Scholar

[14] B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen. Relaxation of crystals with the quasi-newton method, J. Comput. Phys, 131 (1997) 233-240.

DOI: 10.1006/jcph.1996.5612

Google Scholar

[15] Y.L. Page, P. Saxe, Symmetry-general least-squares extraction of the elastic coefficietents from ab-inition total energy calculations, Phys. Rev. B. 63 (2001) 4103-4110.

DOI: 10.1103/physrevb.63.174103

Google Scholar

[16] R. Hill, The elastic behaviour of a crystalline aggregate, Process. Phys. Soc. A. 65 (1952) 349-354.

Google Scholar

[17] G. Grimvall, Thermophysical properties of materials, Amsterdam: North Holland, 1999: 15.

Google Scholar

[18] C. Kittel, Introduction to solid state physics, New York, Wiley, (1997).

Google Scholar

[19] R.F.S. Hearmon, An introduction to applied anisotropic elasticity, Oxford: Oxford University Press, (1961).

Google Scholar

[20] M.A. Caravaca, J.C. Miňo, V.J. Pérez, R.A. Casali, C.A. Ponce, Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure, J. Phys.: Condens. Matter. 21 (2009) 15501-15511.

DOI: 10.1088/0953-8984/21/1/015501

Google Scholar

[21] J.Y. Xiang, J.H. Huang, Chen S H, Liang W J, Zhao X K, Zhang H. Elastic constants and the lowest thermal conductivity La2Zr2O7: first-principles, J. Aeronaut. Mater. 32 (2012) 1-6. (Chinese).

Google Scholar

[22] D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163-164 (2003) 67-74.

DOI: 10.1016/s0257-8972(02)00593-5

Google Scholar

[23] J.P. Crocombette, A. Chartier, Molecular dynamics studies of radiation induced phase transitions in La2Zr2O7 pyrochlore, Nucl. Instrum. Methods Phys. Res. Sect. B. 255 (2007) 158-165.

DOI: 10.1016/j.nimb.2006.11.019

Google Scholar

[24] D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Physica B: Condens. Matter. 46 (1992) 6131-6140.

DOI: 10.1103/physrevb.46.6131

Google Scholar

[25] P. Strunz, G. Schumacher, R. Vaßen, A. Wiedenmann, V. Ryukhtin, In situ small-angle neutron scattering study of La2Zr2O7 and SrZrO3 ceramics for thermal barrier coatings, Scr. Mater. 55 (2006): 545–548.

DOI: 10.1016/j.scriptamat.2006.05.022

Google Scholar

[26] M.E. Björketuna, C.S. Knee, B.J. Nyman, G. Wahnström, Protonic defects in pure and doped La2Zr2O7 pyrochlore oxide, Solid State Ionics, 178 (2008) 1642-1647.

DOI: 10.1016/j.ssi.2007.10.014

Google Scholar

[27] Q. Xu, W. Pan, J.D. Wang, C.L. Wan, L.H. Qi, H.Z. Miao, K. Mori, T. Torigoe, Rare-Earth zirconate ceramics with fluorite structure for thermal barrier coatings, J. Am. Ceram. Soc. 89 (2006) 340-342.

DOI: 10.1111/j.1551-2916.2005.00667.x

Google Scholar

[28] D. Errandonea, R.S. Kumar, S.N. Achary, O. Gomis, F.J. Manjón, R. Shukla, A.K. Tyagi, New high-pressure phase and equation of state of Ce2Zr2O8, J. Appl. Phys. 053519 (2012) 1-33.

DOI: 10.1063/1.3692807

Google Scholar

[29] N. Garg, K.K. Pandey, C. Murli, K.V. Shanavas, B.P. Mandal, A.K. Tyagi, S.M. Sharma, Decomposition of lanthanum hafnate at high pressures, Phys. Rev. B. 77 (2008) 1-9.

DOI: 10.1103/physrevb.77.214105

Google Scholar