[1]
L.B. Chen, Yttria-Stablized zirconia thermal barrier coatings-A Review, Surf. Rev. Lett. 13 (2006) 535-544.
DOI: 10.1142/s0218625x06008670
Google Scholar
[2]
H. Chen, X.M. Zhou, C.X. Ding, Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating, J. Eur. Ceram. Soc. 23 (2003) 1449-1455.
DOI: 10.1016/s0955-2219(02)00345-x
Google Scholar
[3]
C.G. Zhou, N. Wang, Z.B. Wang, Thermal cycling life and thermal diffusivity of a plasma-sprayed nanostructured thermal barrier coating, Scripta Mater, 51 (2004) 945-948.
DOI: 10.1016/j.scriptamat.2004.07.024
Google Scholar
[4]
R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stöver. Zirconates as new materials for thermal barrier coatings, J Am Ceram Soc, 83 (2000) 2023-(2028).
DOI: 10.1111/j.1151-2916.2000.tb01506.x
Google Scholar
[5]
B. Liu, J.Y. Wang, Y.C. Zhou, T. Liao, F.Z. Li, Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore, Acta. Mater. 55 (2007): 2949-2957.
DOI: 10.1016/j.actamat.2006.12.035
Google Scholar
[6]
H.Z. Yao, L. Ouyang, W.Y. Ching, Ab initio calculation of the elastic constants of ceramic crystals, J. Am. Ceram. Soc, 90 (2007) 3194-3204.
DOI: 10.1111/j.1551-2916.2007.01931.x
Google Scholar
[7]
R.V. Mangalaraja, B.K. Chandrasekhar, P. Manohar, Effect of ceria on the physical, mechanical and thermal properties of yttria stabilized zirconia toughened alumina, Mater. Sci. Eng. A, 343 (2003) 71-75.
DOI: 10.1016/s0921-5093(02)00368-4
Google Scholar
[8]
Y. Tabira, R.L. Withers, L. Minervini, R. Grimes, Systematic structural change in selected rare earth oxide pyrochlores as determined by wide-angle CBED and a comparison with the results of atomistic computer simulation. J. Solid. State. Chem. (2000).
DOI: 10.1006/jssc.2000.8712
Google Scholar
[9]
B. Liu, J.Y. Wang, F.Z. Li, Y.C. Zhou, Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T=Ge, Ti, Sn, Zr, Hf) pyrochlore, Acta Mater. 58 (2010) 4369-4377.
DOI: 10.1016/j.actamat.2010.04.031
Google Scholar
[10]
A. Chartier, C. Meis, W.J. Weber, L.R. Corrales, Theoretical study of disorder in Ti-substituted La2Zr2O7, Phys. Rev. B. 65 (2002) 1-10.
Google Scholar
[11]
H.J. Deiseroth, H.K. Mueller-Buschbaum, B. Ein, Pyrochlorstruktur an La2Zr2O7, Z. anorg. allg. Chem. 375 (1970) 152-156.
DOI: 10.1002/zaac.19703750205
Google Scholar
[12]
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP Code, J. Phys. Condens. Matter, 14 (2002) 2717-2744.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[13]
J. Feng, B. Xiao, C.L. Wan, Z.X. Qua, Z.C. Huang, J.C. Chen, R. Zhou, W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) Pyrochlore, Acta. Mater. 59 (2011) 1742-1760.
DOI: 10.1016/j.actamat.2010.11.041
Google Scholar
[14]
B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen. Relaxation of crystals with the quasi-newton method, J. Comput. Phys, 131 (1997) 233-240.
DOI: 10.1006/jcph.1996.5612
Google Scholar
[15]
Y.L. Page, P. Saxe, Symmetry-general least-squares extraction of the elastic coefficietents from ab-inition total energy calculations, Phys. Rev. B. 63 (2001) 4103-4110.
DOI: 10.1103/physrevb.63.174103
Google Scholar
[16]
R. Hill, The elastic behaviour of a crystalline aggregate, Process. Phys. Soc. A. 65 (1952) 349-354.
Google Scholar
[17]
G. Grimvall, Thermophysical properties of materials, Amsterdam: North Holland, 1999: 15.
Google Scholar
[18]
C. Kittel, Introduction to solid state physics, New York, Wiley, (1997).
Google Scholar
[19]
R.F.S. Hearmon, An introduction to applied anisotropic elasticity, Oxford: Oxford University Press, (1961).
Google Scholar
[20]
M.A. Caravaca, J.C. Miňo, V.J. Pérez, R.A. Casali, C.A. Ponce, Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure, J. Phys.: Condens. Matter. 21 (2009) 15501-15511.
DOI: 10.1088/0953-8984/21/1/015501
Google Scholar
[21]
J.Y. Xiang, J.H. Huang, Chen S H, Liang W J, Zhao X K, Zhang H. Elastic constants and the lowest thermal conductivity La2Zr2O7: first-principles, J. Aeronaut. Mater. 32 (2012) 1-6. (Chinese).
Google Scholar
[22]
D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163-164 (2003) 67-74.
DOI: 10.1016/s0257-8972(02)00593-5
Google Scholar
[23]
J.P. Crocombette, A. Chartier, Molecular dynamics studies of radiation induced phase transitions in La2Zr2O7 pyrochlore, Nucl. Instrum. Methods Phys. Res. Sect. B. 255 (2007) 158-165.
DOI: 10.1016/j.nimb.2006.11.019
Google Scholar
[24]
D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Physica B: Condens. Matter. 46 (1992) 6131-6140.
DOI: 10.1103/physrevb.46.6131
Google Scholar
[25]
P. Strunz, G. Schumacher, R. Vaßen, A. Wiedenmann, V. Ryukhtin, In situ small-angle neutron scattering study of La2Zr2O7 and SrZrO3 ceramics for thermal barrier coatings, Scr. Mater. 55 (2006): 545–548.
DOI: 10.1016/j.scriptamat.2006.05.022
Google Scholar
[26]
M.E. Björketuna, C.S. Knee, B.J. Nyman, G. Wahnström, Protonic defects in pure and doped La2Zr2O7 pyrochlore oxide, Solid State Ionics, 178 (2008) 1642-1647.
DOI: 10.1016/j.ssi.2007.10.014
Google Scholar
[27]
Q. Xu, W. Pan, J.D. Wang, C.L. Wan, L.H. Qi, H.Z. Miao, K. Mori, T. Torigoe, Rare-Earth zirconate ceramics with fluorite structure for thermal barrier coatings, J. Am. Ceram. Soc. 89 (2006) 340-342.
DOI: 10.1111/j.1551-2916.2005.00667.x
Google Scholar
[28]
D. Errandonea, R.S. Kumar, S.N. Achary, O. Gomis, F.J. Manjón, R. Shukla, A.K. Tyagi, New high-pressure phase and equation of state of Ce2Zr2O8, J. Appl. Phys. 053519 (2012) 1-33.
DOI: 10.1063/1.3692807
Google Scholar
[29]
N. Garg, K.K. Pandey, C. Murli, K.V. Shanavas, B.P. Mandal, A.K. Tyagi, S.M. Sharma, Decomposition of lanthanum hafnate at high pressures, Phys. Rev. B. 77 (2008) 1-9.
DOI: 10.1103/physrevb.77.214105
Google Scholar