[1]
S.B. Park, C.T. Sun, Effect of electric-field on fracture of piezoelectric ceramics, Int. J. Fact. 70 (1995) 203-216.
Google Scholar
[2]
Y.E. Pak, Linear electroelatic fracture-mechanics of piezoelectric materials, Int. J. Fact. 54 (1992) 79-100.
Google Scholar
[3]
Z. Suo, C.M. Kuo, D.M. Barnett, J.R. Wills, Fracture mechanics for piezoelectric ceramics, Mech. Phys. Solids. 40 (1992) 739-765.
DOI: 10.1016/0022-5096(92)90002-j
Google Scholar
[4]
M. Enderlein, A. Ricoeur, M. Kuna, Finite element techniques for dynamic crack analysis in piezoelectrics, Int. J. Fract. 134 (2005) 191-208.
DOI: 10.1007/s10704-005-0522-9
Google Scholar
[5]
B.N. Rao, M. Kuna, Interaction integrals for fracture analysis of functionally graded piezoelectric materials, Int. J. Solids. Struct. 45 (2008) 5237-5257.
DOI: 10.1016/j.ijsolstr.2008.05.020
Google Scholar
[6]
H.J. Yu, L.Z. Wu, L.C. Guo, A domain-independent interaction integral for fracture analysis of non-homogeneous piezoelectric materials, Int. J. Solids. Struct. 49 (2012) 3301-3315.
DOI: 10.1016/j.ijsolstr.2012.07.004
Google Scholar
[7]
J. Lei, H.Y. Wang, Ch. Zhang, Comparison of several BEM-based approaches in evaluating crack-tip field intensity factors in piezoelectric materials, Int. J. Fract. 189 (2014) 111-120.
DOI: 10.1007/s10704-014-9964-2
Google Scholar
[8]
F. García-Sánchez, Ch. Zhang, A. Sáez, 2-D transient dynamic analysis of cracked piezoelectric solids by a time-domain BEM, Comput. Methods. Appl. Mech. Eng. 197 (2008) 3108-3121.
DOI: 10.1016/j.cma.2008.02.013
Google Scholar
[9]
Y.E. Pak, G. Herrmann, Conservation laws and the material momentum tensor for the elastic dielectric, Int. J. Eng. Sci. 24 (1986) 1365-1374.
DOI: 10.1016/0020-7225(86)90065-0
Google Scholar