The Stability Study on Vanadium Dioxide

Article Preview

Abstract:

Vanadium dioxide (VO2) has attracted much interest in material field due to its unique semiconductor-metal phase transition properties. And now, the problem of stability has been highlighted and concerned for the practical application in VO2. In order to establish a relatively complete guide of stability study on VO2 which would contribute to deeply and systematically researches, the article made a review of the stability study on VO2 from thermal excitation, photo-excitation and electro-excitation. Moreover, the key aspects for future research on the stability study of VO2 was proposed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

158-167

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.J. Morin. Oxides which show a metal-to insulator transition at the Neel temperature. Phys. Rev. Lett. (1959) 3: 34.

DOI: 10.1103/physrevlett.3.34

Google Scholar

[2] G.H. Liu, X.Y. Deng and R. Wen. Electronic and optical properties of monoclinic and rutile vanadium dioxide. J. Mater. Sci. (2010) 45 3270–3275.

DOI: 10.1007/s10853-010-4338-2

Google Scholar

[3] G. Stefanovich, A. Pergament and D. Stefanovich. Electrical switching and Mott transition in VO2. J. Phys.: Condens. Matter. (2000) 12 8837-8845.

DOI: 10.1088/0953-8984/12/41/310

Google Scholar

[4] Y.W. Lee, B.J. Kim, S. Choi, et al. Photo-assisted electrical gating in a two-terminal device based on vanadium dioxide thin film. Opt. Express. (2007) 15(17) 12108-12113.

DOI: 10.1364/oe.15.012108

Google Scholar

[5] CH.H. Chen, R.F. Wang, L. Shang, Gate-field-induced phase transitions in VO2: Monoclinic metal phase separation and switchable infrared reflections. Appl. Phys. Lett. (2008) 93 171101.

DOI: 10.1063/1.3009569

Google Scholar

[6] J. Sakai and M. Kurisu. Effect of pressure on the electric-field-induced resistance switching of VO(2) planar-type junctions. Phys. Rev. B. (2008) 78(3) 033106.

DOI: 10.1103/physrevb.78.033106

Google Scholar

[7] H.T. Kim, B.J. Kim, S. Choi, et al. Electrical oscillations induced by the metal-insulator transition in VO2. J. Appl. Phys. (2010) 107 023702.

DOI: 10.1063/1.3330495

Google Scholar

[8] Z.T. Zhang, Y.F. Gao, ZH. Chen, et al. Thermochromic VO2 Thin Films: Solution-Based Processing, Improved Optical Properties, and Lowered Phase Transformation Temperature. Langmuir. (2010) 26(13) 10738–10744.

DOI: 10.1021/la100515k

Google Scholar

[9] A. Cavalleri, C.S. Tóth, C.W. Siders, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. (2001) 87 237401.

DOI: 10.1364/up.2002.mb1

Google Scholar

[10] CH.L. Wang; ZH. Tian, Q.R. Xing, Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy. Acta Phys. Sinica. (2010) 59(11) 7857-7862.

DOI: 10.7498/aps.59.7857

Google Scholar

[11] Q.Y. Wen, H.W. Zhang, Q.H. Yang, et al. Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. (2010) 97 021111.

Google Scholar

[12] T. Driscoll, H.T. Kim, B.G. Chae, et al. Phase-transition driven memristive system. Appl. Phys. Lett. (2009) 95(4) 043503.

DOI: 10.1063/1.3187531

Google Scholar

[13] M. Seo, J. Kyoung, H. Park, et al. Active Terahertz Nanoantennas Based on VO2 Phase Transition Nano Lett. (2010) 10 2064-(2068).

Google Scholar

[14] S.H. Chang, S.B. Lee, D.Y. Jeon, et al. Oxide Double-Layer Nanocrossbar for Ultrahigh-Density Bipolar Resistive Memory. Adv. Mater. (2011) 23(35), 4063.

DOI: 10.1002/adma.201102395

Google Scholar

[15] D. Brassard, S. Fourmaux, M. Jean-Jacques, et al. Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films. Appl. Phys. Lett. (2005) 87 051910.

DOI: 10.1063/1.2001139

Google Scholar

[16] K. Appavoo and R.F. Haglund. Detecting Nanoscale Size Dependence in VO2 Phase Transition Using a Split-Ring Resonator Metamaterial. Nano Lett. (2011) 11 1025-1031.

DOI: 10.1021/nl103842v

Google Scholar

[17] X.J. Wang, C.J. Liang, K.P. Guan, et al. Surface oxidation of vanadium dioxide films prepared by radio frequency magnetron sputtering. Chin. Phys. B. (2008) 17(9) 3512-3515.

DOI: 10.1088/1674-1056/17/9/062

Google Scholar

[18] M. Kamalisarvestani, R. Saidur, S. Mekhilef, et al. Performance, materials and coating technologies of thermochromic thin films on smart windows. Javadi, Renewable and Sustainable Energy Reviews. (2013) 26 353-364.

DOI: 10.1016/j.rser.2013.05.038

Google Scholar

[19] J. Nag and R.F., Jr Haglund. Synthesis of vanadium dioxide thin films and nanoparticles. J. Phys.: Condens. Matter. (2008) 20 264016.

DOI: 10.1088/0953-8984/20/26/264016

Google Scholar

[20] M. Nakajima, N. Takubo, Z. Hiroi, et al. Study of photo-induced phenomena in VO2 by terahertz pump-probe spectroscopy. J. Lumin. (2009) 129(12) 1802-1805.

DOI: 10.1016/j.jlumin.2009.04.091

Google Scholar

[21] J.D. Budai, A. Tselev, J.Z. Tischler, et al. In situ X-ray microdiffraction studies inside individual VO2 microcrystals. Acta Mater. (2013) 61(8) 2751-2762.

DOI: 10.1016/j.actamat.2012.09.074

Google Scholar

[22] C. Ko and S. Ramanathan. Stability of electrical switching properties in VO2 thin films under multiple thermal cycles across the phase transition boundary. J. Appl. Phys. (2008) 104 086105.

DOI: 10.1063/1.3000664

Google Scholar

[23] B. Viswanath, C. Ko and C. Ramanathan. Thermoelastic switching with controlled actuation in VO2 thin films B. Viswanath et al. / Scripta Materialia. (2011) 64 490–493.

DOI: 10.1016/j.scriptamat.2010.11.018

Google Scholar

[24] F.Y. Kong, M. Li, S.S. Pan, et al. Synthesis and thermal stability of W-doped VO2 nanocrystals. Mater. Res. Bull. (2011) 46 2100-2104.

DOI: 10.1016/j.materresbull.2011.06.030

Google Scholar

[25] A. Ilinski, F. Silva-Andrade, E. Shadrin, The influence of the phase transition in the energy of photonic band gap in the opal based composites. J. Non-Cryst. SolidS. (2004) 266 338–340.

DOI: 10.1016/j.jnoncrysol.2004.02.083

Google Scholar

[26] M. Lee and D. Kim. Extrinsic and intrinsic properties in metal-insulator transition of hydrothermally prepared vanadium dioxide crystals. Mater. Charact. (2014) 89 124-131.

DOI: 10.1016/j.matchar.2014.01.002

Google Scholar

[27] A.I. Ivon, V.R. Kolbunov and I.M. Chernenko. Stability of Electrical Properties of Vanadium Dioxide Based Ceramics. J. Eur. Ceram. Soc. (1999) 19 1883-1888.

DOI: 10.1016/s0955-2219(98)00285-4

Google Scholar

[28] A.I. Ivon, V.R. Kolbunov and I.M. Chernenko. Conductivity stabilization by metal and oxide additives in ceramics on the basis of VO2 and glass V2O5-P2O5 J. Non-Cryst. Solids. (2005) 351 3649-3654.

DOI: 10.1016/j.jnoncrysol.2005.08.035

Google Scholar

[29] M.B. Sahana, G.N. Subbanna and S.A. Shivashankar. Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition. J. Appl. Phys. (2002) 92(11) 6495-6504.

DOI: 10.1063/1.1518148

Google Scholar

[30] V.A. Klimov, I.O. Timofeeva, S.D. Khanin, et al. Effect of crystallization of amorphous vanadium dioxide films on the parameters of a semiconductor-metal phase transition. Semiconductors. (2003) 37 370-374.

DOI: 10.1134/1.1568452

Google Scholar

[31] G.H. Fu, A. Polity, N. Volbers, et al. Annealing effects on VO2 thin films deposited by reactive sputteringThin Solid Films. (2006) 515 2519 – 2522.

DOI: 10.1016/j.tsf.2006.04.025

Google Scholar

[32] R. Lopez, T.E. Haynes, L.A. Boatner, et al. Size effects in the structural phase transition of VO 2 nanoparticles. Phys. Rev. B (2002) 65 224113.

Google Scholar

[33] Y.F. Gao, SH.B. Wang, H.J. Luo, et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control. Energy Environ. Sci. (2012).

DOI: 10.1039/c2ee02803d

Google Scholar

[34] Z.T. Zhang, Y.F. Gao, L.T. Kang, et al. Effects of a TiO2 Buffer Layer on Solution-Deposited VO2 Films: Enhanced Oxidization Durability. J. Phys. Chem. C (2010) 114 22214–22220.

DOI: 10.1021/jp108449m

Google Scholar

[35] C. Liu, M.P. Jiang, J.H. Li, Stability of the Vanadium Oxide Films Forme by Reactive Sputtering and Ion Beam Enhanced Deposition Methods. Adv. Mater. Res. (2011) 399-401 589-592.

DOI: 10.4028/www.scientific.net/amr.399-401.589

Google Scholar

[36] Z. Yang, C. Ko, and S. Ramanathan and Annu. Rev. Mater. Res. 41 337 (2011).

Google Scholar

[37] D. Ruzmetov, G. Gopalakrishnan, J. Deng, et al. Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions. J. Appl. Phys. (2009) 106 083702.

DOI: 10.1063/1.3245338

Google Scholar

[38] S. Lysenko, A.J. Rua, V. Vikhnin, et al. Light-induced ultrafast phase transitions in VO2 thin film. Appl. Surf. Sci. (2006) 252 5512-5515.

DOI: 10.1016/j.apsusc.2005.12.137

Google Scholar

[39] A.L. Semenov. Time of a Semiconductor–Metal Phase Transition Induced by an Ultrashort Light Pulse in Vanadium Dioxide. Physics of the Solid State, (2007) 49(6) 1157–1160.

DOI: 10.1134/s1063783407060224

Google Scholar

[40] A. Cavalleri, T. Dekorsy, H.H.W. Chong, Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale. Phys. Rev. B. (2004) 70 161102.

DOI: 10.1103/physrevb.70.161102

Google Scholar

[41] X.R. Chen, J. ZH. Hu and W. ZH. Han. Study on pulse laser damage of vanadium oxide thin film. Transactions of Materials and Heattreatment. (2007) 28(4) 122-124.

Google Scholar

[42] W.Q. Han, X.R. Guo, G.B. Xie, et al. Pulse laser damage characteristic measurement of VO2 optical thin film. Journal of Applied Optics. (2013) 34(4) 690-694.

Google Scholar

[43] W.P. Hsieh, M. Trigo, D.A. Reis, et al. Evidence for photo-induced monoclinic metallic VO2 under high pressur. Appl. Phys. Lett. (2014) 104(2) 021917.

DOI: 10.1063/1.4862197

Google Scholar

[44] E.U. Donev, J.I. Ziegler, R F., Jr Haglund, et al. Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering. J. Opt. A, Pure Appl. Opt. (2009) 11(12) 125002.

DOI: 10.1088/1464-4258/11/12/125002

Google Scholar

[45] S. Lysenko, V. Vikhnin, A. Rúa, et al. Critical behavior and size effects in light-induced transition of nanostructured VO2 films. Phys. Rev. B. (2010) 82 205425.

Google Scholar

[46] H.W. Liu, L.M. Wong, S.J. Wang, et al. Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy. Appl. Phys. Lett. (2013) 103 151908.

DOI: 10.1063/1.4824834

Google Scholar

[47] A. Pashkin, C. Kubler, H. Ehrke, et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B. (2011) 83 195120.

Google Scholar

[48] J. Hiltunen, J. Puustinen, A. Sitomaniemi, et al. Self-modulation of ultra-fast laser pulses with 1550 nm central wavelength in VO2 thin films, Appl. Phys. Lett. (2013) 102 121111.

DOI: 10.1063/1.4798831

Google Scholar

[49] M.E.A. Warwick, A.J. Roberts, R.C.T. Slade, et al. Electric field assisted chemical vapour deposition - a new method for the preparation of highly porous supercapacitor electrodes. J. Mater. Chem. A. (2014) 2(17) 6115-6120.

DOI: 10.1039/c3ta14185c

Google Scholar

[50] M. Nakano, K. Shibuya, N. Ogawa, et al. Infrared-sensitive electrochromic device based on VO2. Appl. Phys. Lett. (2013) 103(15) 153503.

DOI: 10.1063/1.4824621

Google Scholar

[51] Y. Zhao, J. Hao, CH.H. Chen, et al. Electrically controlled metal–insulator transition process in VO2 thin films. J. Phys.: Condens. Matter. (2012) 24 035601.

DOI: 10.1088/0953-8984/24/3/035601

Google Scholar

[52] A. Crunteanu, J. Givernaud, J. Leroy, et al. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis Sci. Technol. Adv. Mater. (2010) 11 065002.

DOI: 10.1088/1468-6996/11/6/065002

Google Scholar

[53] B. Wu, A. Zimmers, H. Aubin, et al. Electric-field-driven phase transition in vanadium dioxide. Phys. Rev. B. (2011) 84 241410(R).

DOI: 10.1103/physrevb.84.241410

Google Scholar

[54] A. Zylbersztejn and M.F. Mott. Metal-insulator transition in vanadium dioxide. Phys. Rev. B (1975) 11 4383-4395.

DOI: 10.1103/physrevb.11.4383

Google Scholar

[55] G. Seo, B.J. Kim, C. Ko, et al. Voltage-Pulse-Induced Switching Dynamics in VO2 Thin-Film Devices on Silicon. IEEE Electron Device Lett. (2011) 32(11) 1582-1584.

DOI: 10.1109/led.2011.2163922

Google Scholar

[56] J. Leroy, A. Crunteanu, A. Bessaudou, et al. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Appl. Phys. Lett. (2012) 100 213507.

DOI: 10.1063/1.4721520

Google Scholar

[57] G. Guzman, F. Beteille, R. Morineau, et al. Electrical switching in VO2 sol-gel films. J. Mater. Chem. (1996) 6 505-506.

DOI: 10.1039/jm9960600505

Google Scholar

[58] S.B. Lee, K. Kim, J.S. Oh, et al. Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films. Appl. Phys. Lett. (2013) 102 063501.

DOI: 10.1063/1.4790842

Google Scholar

[59] Y. Zhou, X.N. Chen, C. Ko, et al. Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide Switches. IEEE Electron Device Lett. (2013) 34(2) 220-222.

DOI: 10.1109/led.2012.2229457

Google Scholar

[60] G. Gopalakrishnan, R. Ruzmetov and S. Ramanathan. On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects. J. Mater. Sci. (2009) 44 5345–5353.

DOI: 10.1007/s10853-009-3442-7

Google Scholar