Hydrothermal Synthesis and Structural Characterization of Orthorhombic LiMnO2 with Low Stacking Faults

Article Preview

Abstract:

LiMnO2 are synthesized by hydrothermal technique by using Mn(CH3COO)2.4H2O and MnO2 with the same mole ratio which are dissolved in aqueous solution with different concentration LiOH. Structural characterization based on X-ray diffraction and Raman spectroscopy reveals that LiMnO2 is in a well-order orthorhombic structure with lower stacking faults compared to the LiMnO2 prepared by other techniques. Experimental results show that the concentration of lithium hydroxide in aqueous solution affect the quality of LiMnO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

174-178

Citation:

Online since:

July 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. N. Reimers, E. W. Fuller, E. Rossen and J. R. Dahn, Synthesis and electrochemical study of LiMnO2 prepared at low temperatures, J. Electrochem. Soc., 140 (1993) 3396-3401.

DOI: 10.1149/1.2221101

Google Scholar

[2] A. R. Armstrong and P. G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, 381 (1996) 499-500.

DOI: 10.1038/381499a0

Google Scholar

[3] L. Croguennec, P. Deniard, R. Brec and A. Lecerf, Prepartion, physical and structural characterization of LiMnO2 sample with variable cationic disorder, J. Mater. Chem., 5(11) (1995) 1919-(1925).

DOI: 10.1039/jm9950501919

Google Scholar

[4] Y. I. Jang and Y. M. Chiang, Stability of the monoclinic and orthorhombic phases of LiMnO2 with temperature, oxygen partial pressure, and Al doping, Solid State Ionics, 130 (2000) 53–59.

DOI: 10.1016/s0167-2738(00)00310-6

Google Scholar

[5] M. Q. Wu, A. Chen, R.Q. Xu and Y. Li, Low temperature hydrothermally synthesized nanocrystalline orthorhombic LiMnO2 cathode material for lithium-ion cells, Microelectronic Engineering., 66 (2003) 180-185.

DOI: 10.1016/s0167-9317(03)00044-3

Google Scholar

[6] Q. Liu, D.L. Mao, C. K. Chang and F. Q. Huang, Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application, J. Power Sources, 173 (2007) 538-544.

DOI: 10.1016/j.jpowsour.2007.03.077

Google Scholar

[7] F. Zhou, X. M. Zhao, Y. Q. Liu, L. Li and C. G. Yuan, Size-controlled hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 nanorods, J. Phys. Chem. Solids, 69 (2008) 2061– (2065).

DOI: 10.1016/j.jpcs.2008.03.001

Google Scholar

[8] E. M. Jin, B. Jin, Y. S. Jeon, K. H. Park and H. B. Gu, Electrochemical properties of LiMnO2 for lithium polymer battery, J. Power Sources, 189 (2009) 620–623.

DOI: 10.1016/j.jpowsour.2008.09.102

Google Scholar

[9] V. R. Hoppe, G. Brachtel and M. Jansen, Zur Kenntnis der Oxomanganate (III): Über LiMnO2 und b-NaMnO2, Z. Anorg. Allg. Chem., 417 (1975) 1-10.

DOI: 10.1002/zaac.19754170102

Google Scholar

[10] J. M. Kim, and H. T. Chung, Electrochemical characteristics of orthorhombic LiMnO2 with different degrees of stacking faults, J. Power Sources., 115 (2003) 125-130.

DOI: 10.1016/s0378-7753(02)00709-7

Google Scholar

[11] L. Croguennec, P. Deniard, R. Brec, P. Biensan and M. Broussely, Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder, Solid State Ionics., 89 (1996) 127-137.

DOI: 10.1016/0167-2738(95)00245-6

Google Scholar

[12] L. Croguennec, P. Deniard, R. Brec and A. Lecerf, Nature of stacking faults orthorhombic LiMnO2, J. Mater. Chem., 7 (1997) 511.

DOI: 10.1039/a604947h

Google Scholar

[13] Y.S. Lee, Y.K. Sun, K. Adachi and M. Yoshio, Synthesis and electrochemical characterization of orthorhombic LiMnO2 material, Electrochimica Acta, 48 (2003) 1031-1039.

DOI: 10.1016/s0013-4686(02)00817-4

Google Scholar

[14] S. T. Myung, S. Komaba and N. Kumagai, Synthetic optimization of orthorhombic LiMnO2 by emulsion-drying method and cycling behavior as cathode material for Li-ion battery, Solid State Ionics, 150 (2002) 199-205.

DOI: 10.1016/s0167-2738(02)00520-9

Google Scholar

[15] X. D. Li , W. S. Yang , S. C. Zhang , D. G. Evans and X. Duan, The synthesis and characterization of nanosized orthorhombic LiMnO2 by in situ oxidation–ion exchange, Solid State Ionics, 176 (2005) 803– 811.

DOI: 10.1016/j.ssi.2004.10.020

Google Scholar

[16] K. M. Shaju, G. V. Subba Rao, and B. V .R. Chowdari, Lithiated O2 phase, Li(2/3)+x(Co0. 15Mn0. 85)O2 as cathode for Li-ion batteries, Solid State Ionics, 152-153 (2002) 69– 81.

DOI: 10.1016/s0167-2738(02)00340-5

Google Scholar

[17] C. M. Julien and M. Massot, Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides, Materials Science and Engineering, B100 (2003) 69-78.

DOI: 10.1016/s0921-5107(03)00077-1

Google Scholar