[1]
J. N. Reimers, E. W. Fuller, E. Rossen and J. R. Dahn, Synthesis and electrochemical study of LiMnO2 prepared at low temperatures, J. Electrochem. Soc., 140 (1993) 3396-3401.
DOI: 10.1149/1.2221101
Google Scholar
[2]
A. R. Armstrong and P. G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, 381 (1996) 499-500.
DOI: 10.1038/381499a0
Google Scholar
[3]
L. Croguennec, P. Deniard, R. Brec and A. Lecerf, Prepartion, physical and structural characterization of LiMnO2 sample with variable cationic disorder, J. Mater. Chem., 5(11) (1995) 1919-(1925).
DOI: 10.1039/jm9950501919
Google Scholar
[4]
Y. I. Jang and Y. M. Chiang, Stability of the monoclinic and orthorhombic phases of LiMnO2 with temperature, oxygen partial pressure, and Al doping, Solid State Ionics, 130 (2000) 53–59.
DOI: 10.1016/s0167-2738(00)00310-6
Google Scholar
[5]
M. Q. Wu, A. Chen, R.Q. Xu and Y. Li, Low temperature hydrothermally synthesized nanocrystalline orthorhombic LiMnO2 cathode material for lithium-ion cells, Microelectronic Engineering., 66 (2003) 180-185.
DOI: 10.1016/s0167-9317(03)00044-3
Google Scholar
[6]
Q. Liu, D.L. Mao, C. K. Chang and F. Q. Huang, Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application, J. Power Sources, 173 (2007) 538-544.
DOI: 10.1016/j.jpowsour.2007.03.077
Google Scholar
[7]
F. Zhou, X. M. Zhao, Y. Q. Liu, L. Li and C. G. Yuan, Size-controlled hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 nanorods, J. Phys. Chem. Solids, 69 (2008) 2061– (2065).
DOI: 10.1016/j.jpcs.2008.03.001
Google Scholar
[8]
E. M. Jin, B. Jin, Y. S. Jeon, K. H. Park and H. B. Gu, Electrochemical properties of LiMnO2 for lithium polymer battery, J. Power Sources, 189 (2009) 620–623.
DOI: 10.1016/j.jpowsour.2008.09.102
Google Scholar
[9]
V. R. Hoppe, G. Brachtel and M. Jansen, Zur Kenntnis der Oxomanganate (III): Über LiMnO2 und b-NaMnO2, Z. Anorg. Allg. Chem., 417 (1975) 1-10.
DOI: 10.1002/zaac.19754170102
Google Scholar
[10]
J. M. Kim, and H. T. Chung, Electrochemical characteristics of orthorhombic LiMnO2 with different degrees of stacking faults, J. Power Sources., 115 (2003) 125-130.
DOI: 10.1016/s0378-7753(02)00709-7
Google Scholar
[11]
L. Croguennec, P. Deniard, R. Brec, P. Biensan and M. Broussely, Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder, Solid State Ionics., 89 (1996) 127-137.
DOI: 10.1016/0167-2738(95)00245-6
Google Scholar
[12]
L. Croguennec, P. Deniard, R. Brec and A. Lecerf, Nature of stacking faults orthorhombic LiMnO2, J. Mater. Chem., 7 (1997) 511.
DOI: 10.1039/a604947h
Google Scholar
[13]
Y.S. Lee, Y.K. Sun, K. Adachi and M. Yoshio, Synthesis and electrochemical characterization of orthorhombic LiMnO2 material, Electrochimica Acta, 48 (2003) 1031-1039.
DOI: 10.1016/s0013-4686(02)00817-4
Google Scholar
[14]
S. T. Myung, S. Komaba and N. Kumagai, Synthetic optimization of orthorhombic LiMnO2 by emulsion-drying method and cycling behavior as cathode material for Li-ion battery, Solid State Ionics, 150 (2002) 199-205.
DOI: 10.1016/s0167-2738(02)00520-9
Google Scholar
[15]
X. D. Li , W. S. Yang , S. C. Zhang , D. G. Evans and X. Duan, The synthesis and characterization of nanosized orthorhombic LiMnO2 by in situ oxidation–ion exchange, Solid State Ionics, 176 (2005) 803– 811.
DOI: 10.1016/j.ssi.2004.10.020
Google Scholar
[16]
K. M. Shaju, G. V. Subba Rao, and B. V .R. Chowdari, Lithiated O2 phase, Li(2/3)+x(Co0. 15Mn0. 85)O2 as cathode for Li-ion batteries, Solid State Ionics, 152-153 (2002) 69– 81.
DOI: 10.1016/s0167-2738(02)00340-5
Google Scholar
[17]
C. M. Julien and M. Massot, Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides, Materials Science and Engineering, B100 (2003) 69-78.
DOI: 10.1016/s0921-5107(03)00077-1
Google Scholar