[1]
C. Laslau, Z. Zujovic and J. Travas-Sejdica, Theories of polyaniline nanostructure self- assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT), Progress in Polymer Science 35 (2010) 1403-1419.
DOI: 10.1016/j.progpolymsci.2010.08.002
Google Scholar
[2]
M.X. Wan, Some Issues Related to Polyaniline Micro/Nanostructures, Macromolecular Rapid Communications 30 (2009) 963-975.
DOI: 10.1002/marc.200800817
Google Scholar
[3]
I.D. Norris, M.M. Shaker, A.G. MacDiarmid, Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synthetic Metals 114 (2000) 109-114.
DOI: 10.1016/s0379-6779(00)00217-4
Google Scholar
[4]
X.Y. Zhang, W.J. Goux, S.K. Manohar, Synthesis of polyaniline nanofibers by nanofiber seeding, Journal of the American Chemical Society 126 (2004) 4502-4503.
DOI: 10.1021/ja031867a
Google Scholar
[5]
H.G. Ding, M.X. Wan, Y. Wei, Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential, Advanced Materials 19 (2007) 465-469.
DOI: 10.1002/adma.200600831
Google Scholar
[6]
C. Wang, Z. Wang, M. Li, H. Li, Well aligned polyaniline nanofibril array membrane and its field emission property, Chem. Phys. Lett. 341(2001) 431-434.
DOI: 10.1016/s0009-2614(01)00509-7
Google Scholar
[7]
Z.M. Zhang, Z.X. Wei, M.X. Wan, Nanostructures of Polyaniline Doped with Inorganic Acids[J]. Macromolecules 35 (2002) 5937-5942.
DOI: 10.1021/ma020199v
Google Scholar
[8]
H.J. Wang, Y. Lu, Morphological control of self-assembly polyaniline micro/nanostructures using dichloroacetic acid, Synthetic Metals 162 (2012) 1369-1374.
DOI: 10.1016/j.synthmet.2012.05.024
Google Scholar
[9]
J. Sui, L.J. Zhang, H. Peng, Label-free DNA sensor construction using self-assembled poly(o-methoxyaniline) hollow nanospheres, European Polymer Journal 49 (2013) 139-146.
DOI: 10.1016/j.eurpolymj.2012.09.009
Google Scholar
[10]
S.E. Mavundla, G.F. Malgas, P. Baker, E. I. Iwuohab, Synthesis and Characterization of Novel Nanophase Hexagonal Poly(2, 5-dimethoxyaniline), Electroanalysis 20 21 (2008) 2347-2353.
DOI: 10.1002/elan.200804326
Google Scholar
[11]
J. Han, Y. Liu and R. Guo, A novel templateless method to nanofibers of polyaniline derivatives with size control, Journal of Polymer Science: Part A: Polymer Chemistry 46 (2008) 740-746.
DOI: 10.1002/pola.22459
Google Scholar
[12]
S. M. Yang and J. H. Chiang. Synthetic Metals. Morphological study of alkylsubstituted polyaniline, 41 (1991) 761-764.
DOI: 10.1016/0379-6779(91)91179-e
Google Scholar
[13]
H.D. Tran, I. Norris, H. Tsang, Y. Wang, B.R. Mattes, R.B. Kaner, Substituted Polyaniline Nanofibers Produced via Rapid Initiated, Polymerization Macromolecules 41 (2008) 7405-7410.
DOI: 10.1021/ma800122d
Google Scholar
[14]
M. Sahin, The Substituent Effects on the Structure and Surface Morphology of Polyaniline, Journal ofAppliedPolymer Science, 115 (2010) 3024–3030.
Google Scholar
[15]
C.H. Luo, H. Peng, L. J Zhang, G. L. Lu, Yiting Wang, and Jadranka Travas-Sejdic. Formation of Nano-/Microstructures of Polyaniline and its Derivatives, Macromolecules 44 (2011) 6899–6907.
DOI: 10.1021/ma201350m
Google Scholar
[16]
Ding H, Shen J, WanM, Chen Z. Formation mechanism of polyaniline nanotubes by a simplified template-free method, Macromol Chem Phys 209 (2008) 864-871.
DOI: 10.1002/macp.200700624
Google Scholar
[17]
A. Gök, B. Sarı and M. Talu, Synthesis and characterization of conducting substituted polyanilines, Synthetic Metals 142 (2004) 41-48.
DOI: 10.1016/j.synthmet.2003.07.002
Google Scholar
[18]
M. Hasik, A. Drelinkiewicz, E. Wenda, C. Paluszkiewicz and S. Quillard, FTIR spectroscopic investigations of polyaniline derivatives–palladium systems, Journal of Molecular Structure 596 (2001) 89-99.
DOI: 10.1016/s0022-2860(01)00694-9
Google Scholar