Synthesis and Characterization of Poly(o-chloroaniline) Micro/Nanostructures in a Novel Redox System

Article Preview

Abstract:

In a redox system containing ascorbic acid(AA) and ammonium persulfate(APS), Poly(o-chloroaniline)(POC) micro/nanostructures including nanoparticles, nanofibers, and microspheres were successfully prepared through a self-assembly process in absence of additional template. The results indicated that POC morphologies were strongly affected by the molar ratio of o-chloroaniline(OC) to ascorbic acid([OC]/[AA]) and the reaction temperature. The fibrillar or spherical POC micro/nanostructures could be dynamically controlled in the AA/APS redox system by changing the polymerization rate of OC monomers. Thermogravimetric analysis showed that the POC nanofibers had a better thermal stability than POC microspheres. The conductivity of POC nanofibers could reach 5.5×10-3S/cm, while the microspheres were almost insulators.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

215-219

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Laslau, Z. Zujovic and J. Travas-Sejdica, Theories of polyaniline nanostructure self- assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT), Progress in Polymer Science 35 (2010) 1403-1419.

DOI: 10.1016/j.progpolymsci.2010.08.002

Google Scholar

[2] M.X. Wan, Some Issues Related to Polyaniline Micro/Nanostructures, Macromolecular Rapid Communications 30 (2009) 963-975.

DOI: 10.1002/marc.200800817

Google Scholar

[3] I.D. Norris, M.M. Shaker, A.G. MacDiarmid, Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synthetic Metals 114 (2000) 109-114.

DOI: 10.1016/s0379-6779(00)00217-4

Google Scholar

[4] X.Y. Zhang, W.J. Goux, S.K. Manohar, Synthesis of polyaniline nanofibers by nanofiber seeding, Journal of the American Chemical Society 126 (2004) 4502-4503.

DOI: 10.1021/ja031867a

Google Scholar

[5] H.G. Ding, M.X. Wan, Y. Wei, Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential, Advanced Materials 19 (2007) 465-469.

DOI: 10.1002/adma.200600831

Google Scholar

[6] C. Wang, Z. Wang, M. Li, H. Li, Well aligned polyaniline nanofibril array membrane and its field emission property, Chem. Phys. Lett. 341(2001) 431-434.

DOI: 10.1016/s0009-2614(01)00509-7

Google Scholar

[7] Z.M. Zhang, Z.X. Wei, M.X. Wan, Nanostructures of Polyaniline Doped with Inorganic Acids[J]. Macromolecules 35 (2002) 5937-5942.

DOI: 10.1021/ma020199v

Google Scholar

[8] H.J. Wang, Y. Lu, Morphological control of self-assembly polyaniline micro/nanostructures using dichloroacetic acid, Synthetic Metals 162 (2012) 1369-1374.

DOI: 10.1016/j.synthmet.2012.05.024

Google Scholar

[9] J. Sui, L.J. Zhang, H. Peng, Label-free DNA sensor construction using self-assembled poly(o-methoxyaniline) hollow nanospheres, European Polymer Journal 49 (2013) 139-146.

DOI: 10.1016/j.eurpolymj.2012.09.009

Google Scholar

[10] S.E. Mavundla, G.F. Malgas, P. Baker, E. I. Iwuohab, Synthesis and Characterization of Novel Nanophase Hexagonal Poly(2, 5-dimethoxyaniline), Electroanalysis 20 21 (2008) 2347-2353.

DOI: 10.1002/elan.200804326

Google Scholar

[11] J. Han, Y. Liu and R. Guo, A novel templateless method to nanofibers of polyaniline derivatives with size control, Journal of Polymer Science: Part A: Polymer Chemistry 46 (2008) 740-746.

DOI: 10.1002/pola.22459

Google Scholar

[12] S. M. Yang and J. H. Chiang. Synthetic Metals. Morphological study of alkylsubstituted polyaniline, 41 (1991) 761-764.

DOI: 10.1016/0379-6779(91)91179-e

Google Scholar

[13] H.D. Tran, I. Norris, H. Tsang, Y. Wang, B.R. Mattes, R.B. Kaner, Substituted Polyaniline Nanofibers Produced via Rapid Initiated, Polymerization Macromolecules 41 (2008) 7405-7410.

DOI: 10.1021/ma800122d

Google Scholar

[14] M. Sahin, The Substituent Effects on the Structure and Surface Morphology of Polyaniline, Journal ofAppliedPolymer Science, 115 (2010) 3024–3030.

Google Scholar

[15] C.H. Luo, H. Peng, L. J Zhang, G. L. Lu, Yiting Wang, and Jadranka Travas-Sejdic. Formation of Nano-/Microstructures of Polyaniline and its Derivatives, Macromolecules 44 (2011) 6899–6907.

DOI: 10.1021/ma201350m

Google Scholar

[16] Ding H, Shen J, WanM, Chen Z. Formation mechanism of polyaniline nanotubes by a simplified template-free method, Macromol Chem Phys 209 (2008) 864-871.

DOI: 10.1002/macp.200700624

Google Scholar

[17] A. Gök, B. Sarı and M. Talu, Synthesis and characterization of conducting substituted polyanilines, Synthetic Metals 142 (2004) 41-48.

DOI: 10.1016/j.synthmet.2003.07.002

Google Scholar

[18] M. Hasik, A. Drelinkiewicz, E. Wenda, C. Paluszkiewicz and S. Quillard, FTIR spectroscopic investigations of polyaniline derivatives–palladium systems, Journal of Molecular Structure 596 (2001) 89-99.

DOI: 10.1016/s0022-2860(01)00694-9

Google Scholar