[1]
W.A. Yarbrough, Current issues and problems in the chemical vapor deposition of diamond. Science. 247(1990) 688-696.
DOI: 10.1126/science.247.4943.688
Google Scholar
[2]
R.W. Lamberton, et al, A study of ultra-thin film ion beam deposited (IBD) hydrogenated amorphous carbon (a-C: H) using atomic force microscopy (AFM) and transmission electron microscopy (TEM), Diamond and Related Materials. 7(1998) 1054-1058.
DOI: 10.1016/s0925-9635(98)00153-8
Google Scholar
[3]
X. T. Zhou, et al, Heteroepitaxial nucleation of diamond on Si(100) via double bias-assisted hot filament chemical vapor deposition, Diamond and Related Materials. 9(2000) 134-139.
DOI: 10.1016/s0925-9635(99)00264-2
Google Scholar
[4]
Y. Zhang, et al, Doping of vanadium to nanocrystalline diamond films by hot filament chemical vapor deposition, Nanoscale Res Lett. 7(2012): 441-445.
DOI: 10.1186/1556-276x-7-441
Google Scholar
[5]
S. Jeedigunta , et al, Electrical contacts to nitrogen incorporated nanocrystalline diamond films. Diamond and Related Materials. 17(2008) 2037-(2040).
DOI: 10.1016/j.diamond.2008.06.012
Google Scholar
[6]
J.G. Buijnsters, J.P. Celis, R.W. A. Hendrikx, Metallic Seed Nanolayers for Enhanced Nucleation of Nanocrystalline Diamond Thin Films, J. Phys. Chem. C. 117 (2013) 23322–23332.
DOI: 10.1021/jp4071482
Google Scholar
[7]
L. Hawelek, et al, Structural studies of nanodiamond by high-energy X-ray diffraction, Diamond and Related Materials. 17(2008) 1186-1193.
DOI: 10.1016/j.diamond.2008.01.107
Google Scholar
[8]
J. Preclhov, F. Trojek, A.K., B. Rezek, B. Dzur, ncaron, Ultrafast photoluminescence of nanocrystalline diamond films, physica status solidi (a). 205(2008) 2154-2157.
DOI: 10.1002/pssa.200879703
Google Scholar
[9]
R. Kravets, et al, Defect spectroscopy of nanodiamond thin layers, Diamond and Related Materials. 15(2006) 559-563.
DOI: 10.1016/j.diamond.2005.11.053
Google Scholar
[10]
Y. K. Liu, et al, Comparative study of nucleation processes for the growth of nanocrystalline diamond, Diamond and Related Materials. 15(2006) 234-238.
DOI: 10.1016/j.diamond.2005.06.020
Google Scholar
[11]
O. Medinaa, et al, Bactericide and bacterial anti-adhesive properties of the nanocrystalline diamond surface, Diamond and Related Materials. 22(2012) 77–81.
DOI: 10.1016/j.diamond.2011.12.022
Google Scholar
[12]
D. Pradhan, et al, Low temperature growth of ultrananocrystalline diamond film and its field emission properties, Diamond and Related Materials. 15(2006) 2001-(2005).
DOI: 10.1016/j.diamond.2006.07.026
Google Scholar
[13]
M. A. Tsysar, Studies of topological features of the HFCVD surface of a nanocrystalline diamond film using a scanning tunneling microscope with a diamond tip, Journal of Superhard Materials. 34 (2012) 256-263.
DOI: 10.3103/s1063457612040077
Google Scholar
[14]
M.A. Ray, et al, Cool plasma functionalization of nano-crystalline diamond films, Diamond and Related Materials. 16(2007) 2087-(2089).
DOI: 10.1016/j.diamond.2007.07.016
Google Scholar
[15]
I.B. Yanchuk, et al, Raman scattering, AFM and nanoindentation characterisation of diamond films obtained by hot filament CVD, Diamond and Related Materials. 13(2004) 266-269.
DOI: 10.1016/j.diamond.2003.11.001
Google Scholar
[16]
T. Lechleitner, et al, The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces, Biomaterials. 29(2008) 4275-4284.
DOI: 10.1016/j.biomaterials.2008.07.023
Google Scholar
[17]
S. Turner, et al, Local boron environment in B-doped nanocrystalline diamond films, Nanoscale. 4(2012): 5960-5963.
Google Scholar
[18]
O.A. Williams, et al, Enhanced diamond nucleation on monodispersed nanocrystalline diamond, Chemical Physics Letters. 445(2007) 255-258.
DOI: 10.1016/j.cplett.2007.07.091
Google Scholar