Nanocrystalline Diamond Film Deposited by Double Bias-Voltage Assited HF-PECVD System

Article Preview

Abstract:

A new process has been developed to obtain high density nanocrystalline diamond (NCD) film via a double bias voltage hot filament-assisted plasma enhanced chemical vapor deposition (HF-PECVD). The microstructure and characterization of the film were analysed by SEM, Raman and AFM. The results show that the NCD film has higher nucleation density and smooth surface, the nanocrysatalline size was in diameter of about 40 nm. Three Raman band near 1150m-1, 1330 cm-1 and 1590m-1 lie in the specrum. The growth mechanism of naocrystalline diamond film was analysized at last.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

243-248

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.A. Yarbrough, Current issues and problems in the chemical vapor deposition of diamond. Science. 247(1990) 688-696.

DOI: 10.1126/science.247.4943.688

Google Scholar

[2] R.W. Lamberton, et al, A study of ultra-thin film ion beam deposited (IBD) hydrogenated amorphous carbon (a-C: H) using atomic force microscopy (AFM) and transmission electron microscopy (TEM), Diamond and Related Materials. 7(1998) 1054-1058.

DOI: 10.1016/s0925-9635(98)00153-8

Google Scholar

[3] X. T. Zhou, et al, Heteroepitaxial nucleation of diamond on Si(100) via double bias-assisted hot filament chemical vapor deposition, Diamond and Related Materials. 9(2000) 134-139.

DOI: 10.1016/s0925-9635(99)00264-2

Google Scholar

[4] Y. Zhang, et al, Doping of vanadium to nanocrystalline diamond films by hot filament chemical vapor deposition, Nanoscale Res Lett. 7(2012): 441-445.

DOI: 10.1186/1556-276x-7-441

Google Scholar

[5] S. Jeedigunta , et al, Electrical contacts to nitrogen incorporated nanocrystalline diamond films. Diamond and Related Materials. 17(2008) 2037-(2040).

DOI: 10.1016/j.diamond.2008.06.012

Google Scholar

[6] J.G. Buijnsters, J.P. Celis, R.W. A. Hendrikx, Metallic Seed Nanolayers for Enhanced Nucleation of Nanocrystalline Diamond Thin Films, J. Phys. Chem. C. 117 (2013) 23322–23332.

DOI: 10.1021/jp4071482

Google Scholar

[7] L. Hawelek, et al, Structural studies of nanodiamond by high-energy X-ray diffraction, Diamond and Related Materials. 17(2008) 1186-1193.

DOI: 10.1016/j.diamond.2008.01.107

Google Scholar

[8] J. Preclhov, F. Trojek, A.K., B. Rezek, B. Dzur, ncaron, Ultrafast photoluminescence of nanocrystalline diamond films, physica status solidi (a). 205(2008) 2154-2157.

DOI: 10.1002/pssa.200879703

Google Scholar

[9] R. Kravets, et al, Defect spectroscopy of nanodiamond thin layers, Diamond and Related Materials. 15(2006) 559-563.

DOI: 10.1016/j.diamond.2005.11.053

Google Scholar

[10] Y. K. Liu, et al, Comparative study of nucleation processes for the growth of nanocrystalline diamond, Diamond and Related Materials. 15(2006) 234-238.

DOI: 10.1016/j.diamond.2005.06.020

Google Scholar

[11] O. Medinaa, et al, Bactericide and bacterial anti-adhesive properties of the nanocrystalline diamond surface, Diamond and Related Materials. 22(2012) 77–81.

DOI: 10.1016/j.diamond.2011.12.022

Google Scholar

[12] D. Pradhan, et al, Low temperature growth of ultrananocrystalline diamond film and its field emission properties, Diamond and Related Materials. 15(2006) 2001-(2005).

DOI: 10.1016/j.diamond.2006.07.026

Google Scholar

[13] M. A. Tsysar, Studies of topological features of the HFCVD surface of a nanocrystalline diamond film using a scanning tunneling microscope with a diamond tip, Journal of Superhard Materials. 34 (2012) 256-263.

DOI: 10.3103/s1063457612040077

Google Scholar

[14] M.A. Ray, et al, Cool plasma functionalization of nano-crystalline diamond films, Diamond and Related Materials. 16(2007) 2087-(2089).

DOI: 10.1016/j.diamond.2007.07.016

Google Scholar

[15] I.B. Yanchuk, et al, Raman scattering, AFM and nanoindentation characterisation of diamond films obtained by hot filament CVD, Diamond and Related Materials. 13(2004) 266-269.

DOI: 10.1016/j.diamond.2003.11.001

Google Scholar

[16] T. Lechleitner, et al, The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces, Biomaterials. 29(2008) 4275-4284.

DOI: 10.1016/j.biomaterials.2008.07.023

Google Scholar

[17] S. Turner, et al, Local boron environment in B-doped nanocrystalline diamond films, Nanoscale. 4(2012): 5960-5963.

Google Scholar

[18] O.A. Williams, et al, Enhanced diamond nucleation on monodispersed nanocrystalline diamond, Chemical Physics Letters. 445(2007) 255-258.

DOI: 10.1016/j.cplett.2007.07.091

Google Scholar