[1]
J.P. Ghosh, R.H. Sui, C.H. Langford, G. Achari, C.P. Berlinguette, A comparison of several nanoscale photocatalysts in the degradation of a common pollutant using LEDs and conventional UV light, Water Res. 43 (2009) 4499-4506.
DOI: 10.1016/j.watres.2009.07.027
Google Scholar
[2]
S.V. Ingale, P.U. Sastry, P.B. Wagh, A.K. Tripathi, R. Rao, R. Tewari, P.T. Rao, R.P. Patel, A.K. Tyagi, S.C. Gupta, Synthesis and micro structural investigations of titaniaesilica nano composite aerogels, Mater. Chem. Phys. 135 (2012) 497-502.
DOI: 10.1016/j.matchemphys.2012.05.014
Google Scholar
[3]
H. Choi, E. Stathatos, D.D. Dionysiou, Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems, Desalination 202 (2007) 199–206.
DOI: 10.1016/j.desal.2005.12.055
Google Scholar
[4]
J.J. Li, J.G. Cao, M. Yang, W.L. Yin, Y.T. Yao, X.D. He, Seeded, growth of silica aerogel by tetraethoxysilane and trimethylchlorosilane co-precursor method, J. Non-Cryst. Solids. 362 (2013) 216-221.
DOI: 10.1016/j.jnoncrysol.2012.11.015
Google Scholar
[5]
U.K.H. Bangi, H.H. Park, C.S. Park, S. Baek, Improvement in optical and physical properties of TEOS based aerogels using acetonitrile via ambient pressure drying, Ceram. Int. 38 (2012) 6883-6888.
DOI: 10.1016/j.ceramint.2012.07.051
Google Scholar
[6]
L. Baia, A. Peter, V. Cosoveanu, E. Indrea, M. Baia, J. Popp, V. Danciu, Synthesis and nanostructural characterization of TiO2 aerogels for photovoltaic devices[ J], Thin Solid Films. 511- 512 (2006) 512-516.
DOI: 10.1016/j.tsf.2005.12.024
Google Scholar
[7]
G. Dagan, M. Tomkiewicz, Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments[ J], J. Phys. Chem. 97 (1993) 12651-12655.
DOI: 10.1021/j100151a001
Google Scholar
[8]
A.V. Rao, R.R. Kalesh, Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors, Sci. Technol. Adv. Mater. 4 (2003) 509-515.
DOI: 10.1016/j.stam.2003.12.010
Google Scholar
[9]
B. Unlusu, S.G. Sunol, A.K. Sunol, Stress formation during heating in supercritical drying, J. Non-Cryst. Solids. 279 (2001) 110-118.
DOI: 10.1016/s0022-3093(00)00398-7
Google Scholar
[10]
P.B. Sarawade, D.V. Quang, A Hilonga, S.J.H. Jeon, T. Kim, Synthesis and characterization of micrometer-sized silica aerogel nanoporous beads, Mater. Lett. 81 (2012) 37-40.
DOI: 10.1016/j.matlet.2012.04.110
Google Scholar
[11]
F. Shi, J.X. Liu, K. Song, Z.Y. Wang, Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying, J. Non-Cryst. Solids. 356 (2012) 2241-2246.
DOI: 10.1016/j.jnoncrysol.2010.08.005
Google Scholar
[12]
B. Xu, J.Y. Cai, N. Finn, Z.S. Cai, An improved method for preparing monolithic aerogels based on methyltrimethoxysilane at ambient pressure Part1: Process development and macrostructures of the aerogels, Microporous Mesoporous Mater. 148 (2012).
DOI: 10.1016/j.micromeso.2011.08.012
Google Scholar
[13]
E. Economopoulos, T. Ioannides, Synthesis of transparent silica aerogels using tetraalkylammonium fluoride catalysts, J. Sol-Gel Sci. Technol. 49 (2009) 347-354.
DOI: 10.1007/s10971-008-1878-x
Google Scholar
[14]
A.S. Dorcheh, M.H. Abbasi, Silica aerogel; synthesis, properties and characterization, J. Mater. Process. Technol. 199 (2008) 10-26.
Google Scholar
[15]
H. Omranpour, S. Motahari, Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature, J. Non-Cryst. Solids. 379 (2013) 7-11.
DOI: 10.1016/j.jnoncrysol.2013.07.025
Google Scholar
[16]
J.J. Li, J.G. Cao, L. Huo, X.D. He, One-step synthesis of hydrophobic silica aerogel via in situ surface modification, Mater Lett. 87 (2012) 146-149.
DOI: 10.1016/j.matlet.2012.07.078
Google Scholar
[17]
S. Haukka, A. Root, The reaction of hexamethyldisilazane and subsequent oxidation of trimethylsilyl groups on silica studied by solid-state NMR and FTIR, J. Phys. chem. 98 (1994) 1695-1703.
DOI: 10.1021/j100057a025
Google Scholar
[18]
T. Rajagopalana, B. Lahlouha, J.A. Lubguban, N. Biswas, S. Gangopadhyay, J. Sun, D.H. Huang, S.L. Simon, D. Toma, R. Butler, Investigation on hexamethyldisilazane vapor treatment of plasma-damaged nanoporous organosilicate films[J], Appl. Surf. Sci. 252 (2006).
DOI: 10.1016/j.apsusc.2005.08.060
Google Scholar
[19]
K.Y. Huang, Z.P. He, K.J. Chao, Mesoporous silica films-characterization and reduction of their uptake[J], Thin Solid Films. 495 (2006) 197-204.
DOI: 10.1016/j.tsf.2005.08.263
Google Scholar
[20]
S.D. Bhagat, Y. H. Kim, C.S. Oh, Y.S. Ahn, J.G. Yeo, Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying, Microporous Mesoporous Mater. 100 (2007) 350-355.
DOI: 10.1016/j.micromeso.2006.10.026
Google Scholar
[21]
N.A.S. Nogueira, E.B.D. Silva, P. M. Jardim, J.M. Sasaki, et al., Synthesis and characterization of NiAl2O4 nanoparticles obtained through gelation, Mater Lett. 61 (2007) 4743-4746.
DOI: 10.1016/j.matlet.2007.03.042
Google Scholar
[22]
S.D. Bhagat, Y.H. Kim, Y.S. Ahnb, J.G. Yeo, Textural properties of ambient pressure dried water-glass based silica aerogel beads: One day synthesis, Microporous Mesoporous Mater. 96 (2006) 237-244.
DOI: 10.1016/j.micromeso.2006.07.002
Google Scholar