The Optimum of Preparation and Characterization of Aerogels like Hydrophobic Titania by Ambient Pressure Drying

Article Preview

Abstract:

The influence of different factors in the alcogel preparation process and ambient pressure drying process on packing density of hydrophobic TiO2 aerogel synthesized by ambient pressure drying (APD) and the optimum preparation conditions were investigated by the orthogonal test with four-factor and three-level L9(34), respectively. The morphology and structural properties of hydrophobic TiO2 aerogels with different density were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetry (TG), N2 adsorption-desorption measurement and Scanning Electron Microscope (SEM). The results showed that the most important factors in the preparation process for TiO2 aerogels with low-density under ambient pressure are aging time, the volume ratio of C2H5OH to TBT, ethanol immersion time and hydrophobic modification time. The optimized preparation conditions are that aging time is 24 h, the volume ratio of C2H5OH to TBT is (7+7) : 5, the volume ratio of H2O to TBT is 1.7 : 5, the volume ratio of HAc to TBT is 1.7 : 5, ethanol immersion time is 24 h, hydrophobic modification time is 48 h, hexane solvent replacement time is 24 h and the drying temperature is 393 K. TiO2 aerogels with density of 460 kg/m3 was obtained at the optimized conditions. TiO2 aerogel with lower density displays higher specific surface area, porosity and pore volume as well as the larger pore size.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

264-274

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Ghosh, R.H. Sui, C.H. Langford, G. Achari, C.P. Berlinguette, A comparison of several nanoscale photocatalysts in the degradation of a common pollutant using LEDs and conventional UV light, Water Res. 43 (2009) 4499-4506.

DOI: 10.1016/j.watres.2009.07.027

Google Scholar

[2] S.V. Ingale, P.U. Sastry, P.B. Wagh, A.K. Tripathi, R. Rao, R. Tewari, P.T. Rao, R.P. Patel, A.K. Tyagi, S.C. Gupta, Synthesis and micro structural investigations of titaniaesilica nano composite aerogels, Mater. Chem. Phys. 135 (2012) 497-502.

DOI: 10.1016/j.matchemphys.2012.05.014

Google Scholar

[3] H. Choi, E. Stathatos, D.D. Dionysiou, Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems, Desalination 202 (2007) 199–206.

DOI: 10.1016/j.desal.2005.12.055

Google Scholar

[4] J.J. Li, J.G. Cao, M. Yang, W.L. Yin, Y.T. Yao, X.D. He, Seeded, growth of silica aerogel by tetraethoxysilane and trimethylchlorosilane co-precursor method, J. Non-Cryst. Solids. 362 (2013) 216-221.

DOI: 10.1016/j.jnoncrysol.2012.11.015

Google Scholar

[5] U.K.H. Bangi, H.H. Park, C.S. Park, S. Baek, Improvement in optical and physical properties of TEOS based aerogels using acetonitrile via ambient pressure drying, Ceram. Int. 38 (2012) 6883-6888.

DOI: 10.1016/j.ceramint.2012.07.051

Google Scholar

[6] L. Baia, A. Peter, V. Cosoveanu, E. Indrea, M. Baia, J. Popp, V. Danciu, Synthesis and nanostructural characterization of TiO2 aerogels for photovoltaic devices[ J], Thin Solid Films. 511- 512 (2006) 512-516.

DOI: 10.1016/j.tsf.2005.12.024

Google Scholar

[7] G. Dagan, M. Tomkiewicz, Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments[ J], J. Phys. Chem. 97 (1993) 12651-12655.

DOI: 10.1021/j100151a001

Google Scholar

[8] A.V. Rao, R.R. Kalesh, Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors, Sci. Technol. Adv. Mater. 4 (2003) 509-515.

DOI: 10.1016/j.stam.2003.12.010

Google Scholar

[9] B. Unlusu, S.G. Sunol, A.K. Sunol, Stress formation during heating in supercritical drying, J. Non-Cryst. Solids. 279 (2001) 110-118.

DOI: 10.1016/s0022-3093(00)00398-7

Google Scholar

[10] P.B. Sarawade, D.V. Quang, A Hilonga, S.J.H. Jeon, T. Kim, Synthesis and characterization of micrometer-sized silica aerogel nanoporous beads, Mater. Lett. 81 (2012) 37-40.

DOI: 10.1016/j.matlet.2012.04.110

Google Scholar

[11] F. Shi, J.X. Liu, K. Song, Z.Y. Wang, Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying, J. Non-Cryst. Solids. 356 (2012) 2241-2246.

DOI: 10.1016/j.jnoncrysol.2010.08.005

Google Scholar

[12] B. Xu, J.Y. Cai, N. Finn, Z.S. Cai, An improved method for preparing monolithic aerogels based on methyltrimethoxysilane at ambient pressure Part1: Process development and macrostructures of the aerogels, Microporous Mesoporous Mater. 148 (2012).

DOI: 10.1016/j.micromeso.2011.08.012

Google Scholar

[13] E. Economopoulos, T. Ioannides, Synthesis of transparent silica aerogels using tetraalkylammonium fluoride catalysts, J. Sol-Gel Sci. Technol. 49 (2009) 347-354.

DOI: 10.1007/s10971-008-1878-x

Google Scholar

[14] A.S. Dorcheh, M.H. Abbasi, Silica aerogel; synthesis, properties and characterization, J. Mater. Process. Technol. 199 (2008) 10-26.

Google Scholar

[15] H. Omranpour, S. Motahari, Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature, J. Non-Cryst. Solids. 379 (2013) 7-11.

DOI: 10.1016/j.jnoncrysol.2013.07.025

Google Scholar

[16] J.J. Li, J.G. Cao, L. Huo, X.D. He, One-step synthesis of hydrophobic silica aerogel via in situ surface modification, Mater Lett. 87 (2012) 146-149.

DOI: 10.1016/j.matlet.2012.07.078

Google Scholar

[17] S. Haukka, A. Root, The reaction of hexamethyldisilazane and subsequent oxidation of trimethylsilyl groups on silica studied by solid-state NMR and FTIR, J. Phys. chem. 98 (1994) 1695-1703.

DOI: 10.1021/j100057a025

Google Scholar

[18] T. Rajagopalana, B. Lahlouha, J.A. Lubguban, N. Biswas, S. Gangopadhyay, J. Sun, D.H. Huang, S.L. Simon, D. Toma, R. Butler, Investigation on hexamethyldisilazane vapor treatment of plasma-damaged nanoporous organosilicate films[J], Appl. Surf. Sci. 252 (2006).

DOI: 10.1016/j.apsusc.2005.08.060

Google Scholar

[19] K.Y. Huang, Z.P. He, K.J. Chao, Mesoporous silica films-characterization and reduction of their uptake[J], Thin Solid Films. 495 (2006) 197-204.

DOI: 10.1016/j.tsf.2005.08.263

Google Scholar

[20] S.D. Bhagat, Y. H. Kim, C.S. Oh, Y.S. Ahn, J.G. Yeo, Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying, Microporous Mesoporous Mater. 100 (2007) 350-355.

DOI: 10.1016/j.micromeso.2006.10.026

Google Scholar

[21] N.A.S. Nogueira, E.B.D. Silva, P. M. Jardim, J.M. Sasaki, et al., Synthesis and characterization of NiAl2O4 nanoparticles obtained through gelation, Mater Lett. 61 (2007) 4743-4746.

DOI: 10.1016/j.matlet.2007.03.042

Google Scholar

[22] S.D. Bhagat, Y.H. Kim, Y.S. Ahnb, J.G. Yeo, Textural properties of ambient pressure dried water-glass based silica aerogel beads: One day synthesis, Microporous Mesoporous Mater. 96 (2006) 237-244.

DOI: 10.1016/j.micromeso.2006.07.002

Google Scholar