Fabrication and Characterization of Nano-Sized Starch Particles

Article Preview

Abstract:

An efficient method of preparing nanostarch using high-intensity ultrasonic irradiation and acid hydrolysis was discussed. The transmission electron microscope (TEM) showed that the nanosized starch particles were in shape of sphere with the size of 80-120 nm, and their surfaces were rough with many flocci. The Fourier transform infrared spectrometer (FT-IR) revealed that the products maintained the original biological characteristics, and the molecules did not undergo any chemical changes. In addition, the effects of experimental conditions were analyzed and a plausible mechanism was proposed to explain the formation of the nanostarch.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

275-280

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Davis, N. Supatcharee, R.L. Khandelwal, R.N. Chibbar, Synthesis of novel starches in planta: opportunities and challenges, Starch/Stärke, 55 (2003) 107-120.

DOI: 10.1002/star.200390036

Google Scholar

[2] S. Chakraborty, B. Sahoo, I. Teraoka, Solution properties of starch nanoparticles in water and DMSO as studied by dynamic light scattering, Carbohydr. Polym. 60 (2005) 475-481.

DOI: 10.1016/j.carbpol.2005.03.011

Google Scholar

[3] H. Angellier, S. Molina-Boisseau, M.N. Belgacem, A. Dufresne, Surface chemical modification of waxy maize starch nanocrystals, Langmuir. 21 (2005) 2425-2433.

DOI: 10.1021/la047530j

Google Scholar

[4] C.X. Song, V. Labhasetetwar, H. Murphy, X. Qu, Formulation and characterization of biodegradable nanoparticales for intravascular local drug delivery, J. Controlled Release. 43 (1997) 197-222.

DOI: 10.1016/s0168-3659(96)01484-8

Google Scholar

[5] J. Wittawat, S. Shigeru, T. Kazumi, P. Chureerat, Nano-structure of heat–moisture treated waxy and normal starches, Carbohydr. Polym. 97 (2013) 1-8.

Google Scholar

[6] R. Wongsagon, S. Shobsngob, S. Varavinit, Preparation and physicochemical properties of dialdehyde tapioca starch, Starch/Stärke. 57 (2005) 166-172.

DOI: 10.1002/star.200400299

Google Scholar

[7] L. Vertuccio, G. Gorrasi, A. Sorrentino, V. Vittoria, Nano clay reinforced PCL/starch blends obtained by high energy ball milling, Carbohydr. Polym. 75 (2009) 172-179.

DOI: 10.1016/j.carbpol.2008.07.020

Google Scholar

[8] J.L. Putaux, S. Molina-Boisseau, T. Momaur, A. Dufresne, Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis, Biomacromolecules. 4 (2003) 1198-1202.

DOI: 10.1021/bm0340422

Google Scholar

[9] H. Cho, M.A. Waters, R. Hogg, Investigation of the grind limit in stirred-media milling, Int. J. Miner. Process. 44-45 (1996) 607-615.

DOI: 10.1016/b978-0-444-82440-0.50053-5

Google Scholar

[10] K.S. Suslick, G.J. Price, Applications of ultrasound to materials chemistry, Annu. Rev. Mater. Sci. 29 (1999) 295-326.

DOI: 10.1146/annurev.matsci.29.1.295

Google Scholar

[11] A. Gedanken, Ultrasonic sonochemistry invited contributions-part of an occasional series reviewing hot topics, in sonochemistry: using sonochemistry for the fabrication of nanomaterials, Ultrason. Sonochem. 11 (2004) 47-55.

DOI: 10.1016/j.ultsonch.2004.01.037

Google Scholar

[12] L.C. Déborah, A.C. Hélène, Preparation and application of starch nanoparticles for nanocomposites: A review , http: /www. sciencedirect. com, in press 28 October (2014).

Google Scholar

[13] T.J. Mason, in: Povey, M.J.W., Mason, T.J. (Eds. ), Ultrasound in Food Processing, UK: Thomson Science, London, 1998, pp.105-126.

Google Scholar

[14] L.F. Wang, Y.J. Wang, Rice starch isolation by neutral protease and high-intensity ultrasound, J. Cereal Sci. 39 (2004) 291-296.

DOI: 10.1016/j.jcs.2003.11.002

Google Scholar

[15] J.H. Choi, S.B. Kim, Effect of ultrasound on sulfuric acid-catalysed hydrolysis of starch, Korean J. Chem. Eng. 11 (1994) 178-184.

DOI: 10.1007/bf02697463

Google Scholar

[16] J.Y. Zuo, K. Knoerzer, R. Mawson, S. Kentish, M. Ashokkumar, The pasting properties of sonicated waxy rice starch suspensions, Ultrason. Sonochem. 16 (2009) 462-468.

DOI: 10.1016/j.ultsonch.2009.01.002

Google Scholar

[17] R. Czechowska-Biskup, B. Rokita, S. Lotfy, P. Ulanski, J.M. Rosiak, Degradation of chitosan and starch by 360-kHz ultrasound, Carbohydr. Polym. 60 (2005) 175-184.

DOI: 10.1016/j.carbpol.2004.12.001

Google Scholar

[18] Y. Iida, T. Tuziuti, K. Yasui, A. Towata, T. Kozuka, Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization, Innovative Food Sci. & Energing Technol. 9 (2008) 140-146.

DOI: 10.1016/j.ifset.2007.03.029

Google Scholar

[19] S.N. Yuen, S.M. Choi, D.L. Phillips, C.Y. Ma, Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides, Food Chem. 114 (2009) 1091-1098.

DOI: 10.1016/j.foodchem.2008.10.053

Google Scholar

[20] S. Tamaki, M. Hisamatsu, K. Teranishi, T. Adachi, T. Yamada, Structural change of maize starch granules by ball-mill treatment, Starch/Stärke. 50 (1998) 342-348.

DOI: 10.1002/(sici)1521-379x(199808)50:8<342::aid-star342>3.0.co;2-b

Google Scholar