Solvothermal Synthsis of Nano-Sized Li4Ti5O12 Particles as Anode Material for Lithium Ion Batteries

Article Preview

Abstract:

We synthesized nano-Li4Ti5O12 particles by solvothermal method. The as-prepared materials were characterized by XRD, SEM, TEM and electrochemical measurements. The Li4Ti5O12Li4Ti5O12 showed excellent rate capability and cycle ability. The as-preparedLi4Ti5O12 Li4Ti5O12 electrode exhibited highly initial discharge capacity 176 mAh/g at 0.1 C rate up to, which was slightly higher than its theoretical capacity (175 mAh/g). By increasing the C-rate, the cell showed 152, 143, 138 and 135 mAh/g at 0.5, 1, 1.5 and 2 C, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

281-285

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Yang, S. C. Wang, X. Y. Zhou, J. Xie, Electrochemical behaviors of functionalized carbon nanotubes in LiPF6/EC+ DMC electrolyte, Int. J. Electrochem. Sci. 7 (2012) 6118-6126.

DOI: 10.1016/s1452-3981(23)19466-1

Google Scholar

[2] Yu. Petrusenko, A. Bakai, I. Neklyudov, S. Bakai, V. Borysenko, G. Wang, P. K. Liaw, L. Huang, T. Zhang, Low-and high-frequency fatigue of bulk metallic glasses, J. Alloys Comp. 509 (2011) 123-127.

DOI: 10.1016/j.jallcom.2011.01.205

Google Scholar

[3] L. F. Shen, C. Z. Yuan, H. J. Luo, X. G. Zhang, K. Xu, Y. Y. Xia, Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries, J. Mater. Chem. 20 (2010) 6998-7004.

DOI: 10.1039/c0jm00348d

Google Scholar

[4] G. W. Xie, J. F. Ni, X. F. Liao, L. J. Gao, Filter paper templated synthesis of chain-structured Li4Ti5O12/C composite for Li-ion batteries, Mater. Lett. 78 (2012) 177-179.

DOI: 10.1016/j.matlet.2012.03.057

Google Scholar

[5] R. Cai, S. M. Jiang, X. Yu, B. T. Zhao, H. T. Wang, Z. P. Shao, A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature, J. Mater. Chem. 22 (2010).

DOI: 10.1039/c2jm15731d

Google Scholar

[6] Y. Qiao, X. L. Hu, Y. Liu, Y. H. Huang, Li4Ti5O12 nanocrystallites for high-rate lithium-ion batteries synthesized by a rapid microwave-assisted solid-state process, Electrochem. Acta 63 (2012) 118-123.

DOI: 10.1016/j.electacta.2011.12.064

Google Scholar

[7] J. -Y. Lin, C. -C. Hsu, H. -P. Ho, S. -h. Wu, Sol-gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries, Electrochem Acta 87 (2013) 126-132.

DOI: 10.1016/j.electacta.2012.08.128

Google Scholar

[8] A. K. Rai, J. Gim, S. -W. Kang, V. Mathew, L. T. Anh, J. Kang, J. Song, B. J. Paul, J. Kim, Improved electrochemical performance of Li4Ti5O12 with a variable amount of graphene as a conductive agent for rechargeable lithium-ion batteries by solvothermal method, Mater. Chem. Phys. 136 (2012).

DOI: 10.1016/j.matchemphys.2012.08.048

Google Scholar

[9] B. H. Li, C. P. Han, Y. B. He, C. Yang, H. D. Du, Q. H. Yang, F. Y. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance, Energy Environ. Sci. 5 (2012) 9595-9602.

DOI: 10.1039/c2ee22591c

Google Scholar

[10] N. D He, B. S. Wang, J. J. Huang, Preparation and electrochemical performance of monodisperse Li4Ti5O12 hollow spheres, J. Solid State Electrochem. 14 (2010) 1241-1246.

DOI: 10.1007/s10008-009-0933-z

Google Scholar

[11] F. X. Wu, X. H. Li, Z. X. Wang, H. J. Guo, Z. J. He, Q. Zhang, X. H. Xiong, P. Yue, Low-temperature synthesis of nano-micron Li4Ti5O12 by an aqueous mixing technique and its excellent electrochemical performance, J. Power Sources 202 (2012).

DOI: 10.1016/j.jpowsour.2011.11.050

Google Scholar