Cobalt Monoxide Nanoparticles Modified Glassy Carbon Electrodes as a Sensor for Determination of Nitrite

Article Preview

Abstract:

A new method for the determination of nitrite was established based on cobalt monoxide (CoO) nanoparticles modified glassy carbon electrode (CS-CoO/GCE). In 0.15mol/L pH 4.0 HAc-NaAc, the CS-CoO/GCE showed a remarkable catalytic and enhancement effect on oxidation of the nitrite. A linear dynamic range of 8.0×10-7 to 6.0×10-3 mol/L (R=0.997) with a detection limit of 1.0×10-7 mol/L was obtained. The electrochemical mechanism was been obtained. This method has been used to determine the content of nitrite in real samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

291-298

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.G. Huang, J.D. Ji, Q.N. Hou, A study on carcinogenesis of endogenous nitrite.

Google Scholar

[2] and nitrosamine, and prevention of cancer, Mutat. Res. 358 (1996) 7-14.

Google Scholar

[3] L.J. He, K.G. Zhang, C.J. Wang, X.L. Luo, S.H. Zhang, Effective indirect enrichment and determination of nitrite ion in water and biological samples using ionic liquid-dispersive liquid–liquid microextraction combined with high-performance liquid chromatography, J. Chromatogr. A. 1218 (2011).

DOI: 10.1016/j.chroma.2011.04.014

Google Scholar

[4] P. Nagaraja, N.G.S. Al-Tayar, A. Shivakumar, A.K. Shrestha, A.K. Gowda, A simple and sensitive spectrophotometric method for the determination of trace amounts of nitrite in environmental and biological samples using 4-amino-5-hydroxynaphthalene-2, 7-disulphonic acid monosodium salt, Spectrochim. Acta A. 75 (2010).

DOI: 10.1016/j.saa.2010.01.010

Google Scholar

[5] S.F. Sonia, P.P. Francisco, L. Isela, B. Carlos, Griess micro-assay for the determination of nitrite by combining fibre optics-based cuvetteless UV–Vis micro-spectrophotometry with liquid-phase microextraction, Anal. Chim. Acta 668 (2010) 195-200.

DOI: 10.1016/j.aca.2010.04.038

Google Scholar

[6] S.S.M. Hassan, S.A.M. Marzouk, H.E.M. Sayour, Selective potentiometric determination of nitrite ion using a novel (4-sulphophenylazo-)1-naphthylamine membrane sensor, Talanta 59 (2003) 1237-1244.

DOI: 10.1016/s0039-9140(03)00034-1

Google Scholar

[7] M. Eguílaz, L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón, A biosensor based on cytochrome c immobilization on a poly-3-methylthiophene/multi-walled carbon nanotubes hybrid-modified electrode. Application to the electrochemical determination of nitrite, J. Electroanal. Chem. 644 (2010).

DOI: 10.1016/j.jelechem.2010.03.025

Google Scholar

[8] W. Dhaoui, M. Bouzitoun, H. Zarrouk, H.B. Ouada, A. Pron, Electrochemical sensor for nitrite determination based on thin films of sulfamic acid doped polyaniline deposited on Si/SiO2 structures in electrolyte/insulator/semiconductor (E.I.S. ) configuration, Synthetic Met. 158 (2008).

DOI: 10.1016/j.synthmet.2008.04.020

Google Scholar

[9] Z.H. Wen, T.F. Kang, Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes, Talanta 62 (2004) 351-355.

DOI: 10.1016/j.talanta.2003.08.003

Google Scholar

[10] J.H. Yu, D.W. Lee, B.K. Kim, T. Jang, Synthesis and properties of magnetic fluid based on iron nanoparticles prepared by a vapor-phase condensation process, J. Magn. Magn. Mater. 304 (2006) 16-18.

DOI: 10.1016/j.jmmm.2006.02.027

Google Scholar

[11] C.K. Ong, H.C. Fang, Z. Yang, Y. Li, Magnetic relaxation in Zn–Sn-doped barium ferrite nanoparticles for recording, J. Magn. Magn. Mater. 213 (2000) 413-417.

DOI: 10.1016/s0304-8853(00)00013-5

Google Scholar

[12] X.C. Tan, J.L. Zhang, S.W. Tan, D.D. Zhao, Z.W. Huang, Y. Mi, Z.Y. Huang, Amperometric Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Immobilized on Fe3O4/Chitosan Modified Glassy Carbon Electrode, Electroanal. 21 (2009) 1514-1520.

DOI: 10.1002/elan.200804572

Google Scholar

[13] S.J. Guo, D. Li, L.X. Zhang, J. Li, E.K. Wang, Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery, Biomaterials 30 (2009) 1881-1889.

DOI: 10.1016/j.biomaterials.2008.12.042

Google Scholar

[14] H. Razmi, E. Habibi, Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system, Electrochim. Acta 55 (2010) 8731-8737.

DOI: 10.1016/j.electacta.2010.07.081

Google Scholar

[15] C.W. Kung, C.Y. Lin, Y.H. Lai, R. Vittal, K.C. Ho, Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose, Biosens. Bioelectron. 27 (2011) 125-131.

DOI: 10.1016/j.bios.2011.06.033

Google Scholar

[16] A. Salimi, R. Hallaj, S. Soltanian, Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: Direct voltammetry and electrocatalytic activity, Biophys. Chem. 130 (2007) 122-131.

DOI: 10.1016/j.bpc.2007.08.004

Google Scholar

[17] M.H. Pournaghi-Azar, H. Dastangoo, Electrocatalytic oxidation of nitrite at an aluminum.

Google Scholar

[18] electrode modified by a chemically deposited palladium entacyanonitrosylferrate film, J. Electroanal. Chem. 567 (2004) 211-218.

Google Scholar

[19] W.J.R. Santos, P.R. Lima, A.A. Tanaka, S.M.C.N. Tanaka, L.T. Kubota, Determination of nitrite in food samples by anodic voltammetry using a modified electrode, Food Chem. 113 (2009) 1206-1211.

DOI: 10.1016/j.foodchem.2008.08.009

Google Scholar

[20] A. Afkhamia, T. Madrakiana, H. Ghaedia, H. Khanmohammadi, Construction of a chemically modified electrode for the selective determinationof nitrite and nitrate ions based on a new nanocomposite, Electrochim. Acta 66 (2012) 255-264.

DOI: 10.1016/j.electacta.2012.01.089

Google Scholar

[21] E. Laviron, Adsorption, autoinhibition, and autocatalysis in polargraphy and in linear potential sweep voltammetry, J. Electroanal. Chem. 52 (1974) 355-393.

DOI: 10.1016/s0022-0728(74)80448-1

Google Scholar