[1]
Y.G. Huang, J.D. Ji, Q.N. Hou, A study on carcinogenesis of endogenous nitrite.
Google Scholar
[2]
and nitrosamine, and prevention of cancer, Mutat. Res. 358 (1996) 7-14.
Google Scholar
[3]
L.J. He, K.G. Zhang, C.J. Wang, X.L. Luo, S.H. Zhang, Effective indirect enrichment and determination of nitrite ion in water and biological samples using ionic liquid-dispersive liquid–liquid microextraction combined with high-performance liquid chromatography, J. Chromatogr. A. 1218 (2011).
DOI: 10.1016/j.chroma.2011.04.014
Google Scholar
[4]
P. Nagaraja, N.G.S. Al-Tayar, A. Shivakumar, A.K. Shrestha, A.K. Gowda, A simple and sensitive spectrophotometric method for the determination of trace amounts of nitrite in environmental and biological samples using 4-amino-5-hydroxynaphthalene-2, 7-disulphonic acid monosodium salt, Spectrochim. Acta A. 75 (2010).
DOI: 10.1016/j.saa.2010.01.010
Google Scholar
[5]
S.F. Sonia, P.P. Francisco, L. Isela, B. Carlos, Griess micro-assay for the determination of nitrite by combining fibre optics-based cuvetteless UV–Vis micro-spectrophotometry with liquid-phase microextraction, Anal. Chim. Acta 668 (2010) 195-200.
DOI: 10.1016/j.aca.2010.04.038
Google Scholar
[6]
S.S.M. Hassan, S.A.M. Marzouk, H.E.M. Sayour, Selective potentiometric determination of nitrite ion using a novel (4-sulphophenylazo-)1-naphthylamine membrane sensor, Talanta 59 (2003) 1237-1244.
DOI: 10.1016/s0039-9140(03)00034-1
Google Scholar
[7]
M. Eguílaz, L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón, A biosensor based on cytochrome c immobilization on a poly-3-methylthiophene/multi-walled carbon nanotubes hybrid-modified electrode. Application to the electrochemical determination of nitrite, J. Electroanal. Chem. 644 (2010).
DOI: 10.1016/j.jelechem.2010.03.025
Google Scholar
[8]
W. Dhaoui, M. Bouzitoun, H. Zarrouk, H.B. Ouada, A. Pron, Electrochemical sensor for nitrite determination based on thin films of sulfamic acid doped polyaniline deposited on Si/SiO2 structures in electrolyte/insulator/semiconductor (E.I.S. ) configuration, Synthetic Met. 158 (2008).
DOI: 10.1016/j.synthmet.2008.04.020
Google Scholar
[9]
Z.H. Wen, T.F. Kang, Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes, Talanta 62 (2004) 351-355.
DOI: 10.1016/j.talanta.2003.08.003
Google Scholar
[10]
J.H. Yu, D.W. Lee, B.K. Kim, T. Jang, Synthesis and properties of magnetic fluid based on iron nanoparticles prepared by a vapor-phase condensation process, J. Magn. Magn. Mater. 304 (2006) 16-18.
DOI: 10.1016/j.jmmm.2006.02.027
Google Scholar
[11]
C.K. Ong, H.C. Fang, Z. Yang, Y. Li, Magnetic relaxation in Zn–Sn-doped barium ferrite nanoparticles for recording, J. Magn. Magn. Mater. 213 (2000) 413-417.
DOI: 10.1016/s0304-8853(00)00013-5
Google Scholar
[12]
X.C. Tan, J.L. Zhang, S.W. Tan, D.D. Zhao, Z.W. Huang, Y. Mi, Z.Y. Huang, Amperometric Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Immobilized on Fe3O4/Chitosan Modified Glassy Carbon Electrode, Electroanal. 21 (2009) 1514-1520.
DOI: 10.1002/elan.200804572
Google Scholar
[13]
S.J. Guo, D. Li, L.X. Zhang, J. Li, E.K. Wang, Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery, Biomaterials 30 (2009) 1881-1889.
DOI: 10.1016/j.biomaterials.2008.12.042
Google Scholar
[14]
H. Razmi, E. Habibi, Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system, Electrochim. Acta 55 (2010) 8731-8737.
DOI: 10.1016/j.electacta.2010.07.081
Google Scholar
[15]
C.W. Kung, C.Y. Lin, Y.H. Lai, R. Vittal, K.C. Ho, Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose, Biosens. Bioelectron. 27 (2011) 125-131.
DOI: 10.1016/j.bios.2011.06.033
Google Scholar
[16]
A. Salimi, R. Hallaj, S. Soltanian, Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: Direct voltammetry and electrocatalytic activity, Biophys. Chem. 130 (2007) 122-131.
DOI: 10.1016/j.bpc.2007.08.004
Google Scholar
[17]
M.H. Pournaghi-Azar, H. Dastangoo, Electrocatalytic oxidation of nitrite at an aluminum.
Google Scholar
[18]
electrode modified by a chemically deposited palladium entacyanonitrosylferrate film, J. Electroanal. Chem. 567 (2004) 211-218.
Google Scholar
[19]
W.J.R. Santos, P.R. Lima, A.A. Tanaka, S.M.C.N. Tanaka, L.T. Kubota, Determination of nitrite in food samples by anodic voltammetry using a modified electrode, Food Chem. 113 (2009) 1206-1211.
DOI: 10.1016/j.foodchem.2008.08.009
Google Scholar
[20]
A. Afkhamia, T. Madrakiana, H. Ghaedia, H. Khanmohammadi, Construction of a chemically modified electrode for the selective determinationof nitrite and nitrate ions based on a new nanocomposite, Electrochim. Acta 66 (2012) 255-264.
DOI: 10.1016/j.electacta.2012.01.089
Google Scholar
[21]
E. Laviron, Adsorption, autoinhibition, and autocatalysis in polargraphy and in linear potential sweep voltammetry, J. Electroanal. Chem. 52 (1974) 355-393.
DOI: 10.1016/s0022-0728(74)80448-1
Google Scholar