Preparation of Modified Urea-Formaldehyde/Phosphate Foamed Thermal Insulation Material

Article Preview

Abstract:

Thermal insulation materials are the most crucial composition in the external wall insulation technology. For the poor fireproofing of organic thermal insulation material, the inorganic/organic composite foamed thermal insulation material is prepared by optimizing inorganic foaming reaction. Inorganic polymer cross-linking system is used as the skeletal structure of foamed composite material and the modified urea-formaldehyde resin with excellent fire resistance is used as toughening material. The analysis results indicate that the composite structure with metal phosphate as skeleton and modified urea-formaldehyde resin as toughened-membrane is formed during the preparation process of the composite foamed material. The property test shows that the thermal conductivity is 0.0389W/m·K, the compressive strength is 180kPa, temperature rise in furnace is less than 20°C and the mass-loss rate is less than 50%. What is more there is no obvious flame appeared in the building materials incombustibility test. Therefore the composite foamed material can be judged to be A-grade incombustible thermal insulation material.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

523-530

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.Y. Zhou, F. Zheng, H.G. Li, C.L. Lu, An environment-friendly thermal insulation material from cotton stalk fibers, Energy Build. 42 (2010) 1070-1074.

DOI: 10.1016/j.enbuild.2010.01.020

Google Scholar

[2] O. Kaynakli, A study on residential heating energy requirement and optimum insulation thickness, Renew. Energy. 33 (2008) 1164-1172.

DOI: 10.1016/j.renene.2007.07.001

Google Scholar

[3] V. Sambou, B. Lartigue, F. Monchoux, M. Adj, Theoretical and experimental study of heat transfer through a vertical partitioned enclosure: Application to the optimization of the thermal resistance, M. Appl. Therm. Eng. 28 (2008) 488-498.

DOI: 10.1016/j.applthermaleng.2007.05.008

Google Scholar

[4] A. Kumar, B.M. Suman, Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal comfort under composite climate, Build. Environ. 59 (2013) 635-643.

DOI: 10.1016/j.buildenv.2012.09.023

Google Scholar

[5] G. -S. Choi, J. -S. Kang, Y. -S. Jeong, S. -E. Lee, J. -Y. Sohn, An experimental study on thermal properties of composite insulation, Thermochim. Acta. 455 (2007) 75-79.

DOI: 10.1016/j.tca.2006.12.013

Google Scholar

[6] I. Budaiwi, A. Abdou, M. Al-Homoud, Variations of thermal conductivity of insulation materials under different operating temperatures: impact on envelope-induced cooling load, J. Build Phys. 8 (2002) 125-132.

DOI: 10.1061/(asce)1076-0431(2002)8:4(125)

Google Scholar

[7] B.P. Jelle, Traditional, state-of-the-art and future thermal building insulation materials and solutions - Properties, requirements and possibilities, Energy Build. 43 (2011) 2549-2563.

DOI: 10.1016/j.enbuild.2011.05.015

Google Scholar

[8] A. Alteheld, K. Hahn, B. Nehls, B. Schmied, Foams having high flame retardancy and low density, U.S. Patent 20, 110, 034, 571 A1. (2011).

Google Scholar

[9] S. Kaida, T. Shimizu, M. Okamoto, Inorganic-organic composite foam and process for the production thereof, U.S. Patent 6, 313, 186 B1. (2001).

Google Scholar

[10] V.C. Shunmugasamy, D. Pinisetty, N. Gupta, Thermal expansion behavior of hollow glass particle/vinyl ester composites, J. Mater. Sci. 47 (2012) 5596-5604.

DOI: 10.1007/s10853-012-6452-9

Google Scholar

[11] J. Njuguna, S. Michalowski, K. Pielichowski, K. Kayvantash, A.C. Walton, Fabrication, Characterization and Low-Velocity Impact Testing of Hybrid Sandwich Composites With Polyurethane/Layered Silicate Foam Cores, Polym. Compos. 32 (2011) 6-13.

DOI: 10.1002/pc.20995

Google Scholar

[12] I. Iwami, A. Yoshino, Inorganic foam and preparation thereof, U.S. Patent 4, 207, 113 A. (1980).

Google Scholar

[13] G. Melcher, Process for producing a mainly inorganic foam, and thus produced mass or moulded part, U.S. Patent 5, 773, 376 A. (1998).

Google Scholar

[14] M. Bohner, U. Gbureck, J.E. Barralet, Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment, Biomaterials. 26 (2005) 6423-6429.

DOI: 10.1016/j.biomaterials.2005.03.049

Google Scholar

[15] J.K. Fink, Chapter 5 - Urea/Formaldehyde Resins, in: J.K. Fink (Ed. ) Reactive Polymers Fundamentals and Applications (Second Edition), William Andrew Publishing, Oxford, 2013, pp.179-192.

DOI: 10.1016/b978-1-4557-3149-7.00005-x

Google Scholar

[16] H.Y. Li, R.G. Wang, H.L. Hu, W.B. Liu, Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent, Appl. Surf. Sci. 255 (2008) 1894-(1900).

DOI: 10.1016/j.apsusc.2008.06.170

Google Scholar

[17] H.Q. Li, Y.F. Zhang, X.R. Zeng, Two-step synthesis and characterization of urea-isobutyraldehyde-formaldehyde resins, Prog. Org. Coat. 66 (2009) 167-172.

DOI: 10.1016/j.porgcoat.2009.07.001

Google Scholar

[18] M.S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials, Build. Environ. 40 (2005) 353-366.

DOI: 10.1016/j.buildenv.2004.05.013

Google Scholar

[19] D.K. Chattopadhyay, D.C. Webster, Thermal stability and flame retardancy of polyurethanes, Prog. Polym. Sci. 34 (2009) 1068-1133.

DOI: 10.1016/j.progpolymsci.2009.06.002

Google Scholar

[20] S. Tohmura, A. Inoue, S.H. Sahari, Influence of the melamine content in melamine-urea-formaldehyde resins on formaldehyde emission and cured resin structure, J. Wood Sci. 47 (2001) 451-457.

DOI: 10.1007/bf00767897

Google Scholar

[21] X.G. Jiang, C.Y. Li, Y. Chi, J.H. Yan, TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion, J. Hazard. Mater. 173 (2010) 205-210.

DOI: 10.1016/j.jhazmat.2009.08.070

Google Scholar

[22] B.D. Park, H.W. Jeong, Hydrolytic stability and crystallinity of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios, J. Adhes. Adhes. 31 (2011) 524-529.

DOI: 10.1016/j.ijadhadh.2011.05.001

Google Scholar