[1]
R. Huang, X. Xu, S. Lee, Y. Zhang, B.J. Kim, Q. Wu, High density polyethylene composites reinforced with hybrid inorganic fillers: morphology, mechanical and thermal performance, Materials. 6 (2013) 4123.
DOI: 10.3390/ma6094122
Google Scholar
[2]
F. Yao, Q. Wu, Coextruded polyethylene and wood-flour composite: effect of shell thickness, wood loading, and core quality, J Appl Polym Sci. 118 (2010) 3594–3595.
DOI: 10.1002/app.32742
Google Scholar
[3]
C. Rauwendaal, Polymer extrusion; revised 4th edition, Hanser Verlag, ISBN-10: 1-56990-321-6, Munchen, Germany, 2001, p.567.
Google Scholar
[4]
S. Ward, Coextrusion, Rapra review report, ISBN: 0-902348-71-X, United Kingdom, 2001, p.6.
Google Scholar
[5]
B.J. Kim, The effect of inorganic fillers on the properties of wood plastic composites, Dissertation, Louisiana State University, 2012, pp.2-3, 36.
Google Scholar
[6]
Q. Wu, K. Chi, Y. Wub, S. Lee, Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells, Mater Design. 60 (2014) 334–335.
DOI: 10.1016/j.matdes.2014.04.010
Google Scholar
[7]
S. Jin, L.M. Matuana, Coextruded PVC/wood-flour composites with WPC cap layers, J Vinyl Addit Techn. 14 (2008) 197.
DOI: 10.1002/vnl.20162
Google Scholar
[8]
N.M. Stark, L.M. Matuana, Co-extrusion of WPCs with a clear cap layer to improve color stability, in proceedings: 4th wood fibre polymer composites international symposium: March 30-31, Bordeaux, France, 2009, pp.2-3.
Google Scholar
[9]
N.M. Stark, L.M. Matuana, Coating WPCs using co-extrusion to improve durability, in proceedings: coating wood and wood composites: designing for durability, July 23-25, Seattle, WA, 2007, pp.1-3.
Google Scholar
[10]
R. Huang, B.J. Kim, S. Lee, Z. Yang, Q. Wu, Co-extruded wood-plastic composites with talc-filled shells: morphology, mechanical, and thermal expansion performance, Bioresources. 8(2) (2013) 2283-2284.
DOI: 10.15376/biores.8.2.2283-2299
Google Scholar
[11]
B.J. Kim, R. Huang, J. Han, S. Lee, Q. Wu, Mechanical and morphological properties of coextruded wood plastic composites with glass fiber-filled shell, Polym composite. (2014) 1-2.
DOI: 10.1002/pc.23240
Google Scholar
[12]
G. Huang, S. Wang, P. Song, C. Wua, S. Chen, X. Wang, Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites, Compos Part A. 59 (2014) 22.
DOI: 10.1016/j.compositesa.2013.12.010
Google Scholar
[13]
M.S. Stark, R.H. White, S.A. Mueller, T.A. Osswald, Evaluation of various fire retardants for use in wood flour-polyethylene composites, Polym Degrad Stabil. 95 (2010) (1904).
DOI: 10.1016/j.polymdegradstab.2010.04.014
Google Scholar
[14]
S. Liang, N.M. Neisius, S. Gaan, Recent developments in flame retardant polymeric coatings, Prog Org Coat. 76 (2013) 1648.
DOI: 10.1016/j.porgcoat.2013.07.014
Google Scholar
[15]
M. Shahvazian, M. Ghaffari, H. Azimi, R. Jahanmardi, Effects of multi-walled carbon nanotubes on flame retardation and thermal stabilization performance of phosphorus-containing flame retardants in polypropylene, Int Nano Letter. 2(27) (2012) 3.
DOI: 10.1186/2228-5326-2-27
Google Scholar
[16]
P. Wei, S. Bocchini, G. Camino, Flame retardant and thermal behavior of polylactide/expandable graphite composites, Polymery. 58(5) (2013) 364.
DOI: 10.14314/polimery.2013.361
Google Scholar
[17]
A.A. Klyosov, Wood-plastic composites, ISBN 978-0-470-148491-4, 2007, p.476.
Google Scholar
[18]
M. Wang, X. Wang, L. Li, H. Ji, Fire performance of plywood treated with ammonium polyphosphate and 4A zeolite, Bioresources. 9 (2014) 4939.
DOI: 10.15376/biores.9.3.4934-4945
Google Scholar
[19]
D.W. Krassowski, D.A. Hutchings, S.P. Qureshi, Expandable graphite flake as an additive for a new flame retardant resin, Rrafguard, Fire retardant additive. (2012) 7-8.
Google Scholar