Performance Simulation on a Magnetorheological Valve Module Using Three Different Commercial Magnetorheological Fluid

Article Preview

Abstract:

Simulation studies on a new concept of modular Magnetorheological (MR) valve using annular-radial gap combination are discussed in this paper. This study predicts and compares the performance of MR valve module with three different commercial kind MR fluids namely the MRF-122EG, MRF-132DG, and MRF140CG. Magnetorheological effect in various types of MR fluid is analyzed using finite element method (FEM) software in term of simulation magnetic field density within the valve module. The approximated functions of permeability and field dependent yield stress for each kind of MR fluid are derived and presented in this paper as a prerequisite for simulation works. The result has shown that the highest pressure drop rating is reached by applying an MR fluid type MRF140CG, for another kind has shown smallest of pressure drop rating because of the ability to produce the achievable pressure drop highly depends on MR fluid properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-41

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, Magnetorheological fluids: a review, Soft Matter, vol. 7, no. 8, p.3701, (2011).

DOI: 10.1039/c0sm01221a

Google Scholar

[2] S. Yokota, K. Yoshida, and Y. Kondoh, A pressure control valve using MR fluid, Proc. JFPS Int. Symp. Fluid Power, vol. 1999, no. 4, p.377–380, (1999).

DOI: 10.5739/isfp.1999.377

Google Scholar

[3] X. Wang, F. Gordaninejad, G. H. Hitchcock, K. Bangrakulur, A. Fuchs, J. Elkins, C. a. Evrensel, U. Dogruer, S. Ruan, M. Siino, and M. Q. Kerns, A new modular magneto-rheological fluid valve for large-scale seismic applications, Smart Sturctures Mater., vol. 5386, p.226–237, Jul. (2004).

DOI: 10.1117/12.540275

Google Scholar

[4] D. H. Wang, H. X. Ai, and W. H. Liao, A magnetorheological valve with both annular and radial fluid flow resistance gaps, Smart Mater. Struct., vol. 18, no. 11, p.115001, Nov. (2009).

DOI: 10.1088/0964-1726/18/11/115001

Google Scholar

[5] F. Imaduddin, S. A. Mazlan, H. Zamzuri, and I. I. M. Yazid, Design and performance analysis of a compact magnetorheological valve with multiple annular and radial gaps, J. Intell. Mater. Syst. Struct., vol. 0, no. 0, p.1–12, Oct. (2013).

DOI: 10.1177/1045389x13508332

Google Scholar

[6] F. Imaduddin, S. Amri Mazlan, M. Azizi Abdul Rahman, H. Zamzuri, and B. Ichwan, A high performance magnetorheological valve with a meandering flow path, Smart Mater. Struct., vol. 23, no. 6, p.065017, Jun. (2014).

DOI: 10.1088/0964-1726/23/6/065017

Google Scholar

[7] J. D. Carlson and M. R. Jolly, MR fluid, foam and elastomer devices, Mechatronics, vol. 10, no. 4–5, p.555–569, Jun. (2000).

DOI: 10.1016/s0957-4158(99)00064-1

Google Scholar

[8] T. Data, MRF-122EG Magneto-Rheological Fluid, Lord product selector guide: lord magnetorheological fluids, 2008. www. lord. com.

Google Scholar

[9] T. Data, MRF-132DG Magneto-Rheological Fluid, Lord product selector guide: lord magnetorheological fluids, 2011. www. lord. com.

Google Scholar

[10] T. Data, MRF-140CG Magneto-Rheological Fluid, Lord product selector guide: lord magnetorheological fluids, 2008. www. lord. com.

Google Scholar

[11] H. X. Ai, Design and modeling of a magnetorheological valve with both annular and radial flow paths, J. Intell. Mater. Syst. Struct., vol. 17, no. 4, p.327–334, Apr. (2006).

DOI: 10.1177/1045389x06055283

Google Scholar

[12] D. H. Wang, H. X. Ai, and W. H. Liao, A magnetorheological valve with both annular and radial fluid flow resistance gaps, Smart Mater. Struct., vol. 18, no. 11, p.115001, Nov. (2009).

DOI: 10.1088/0964-1726/18/11/115001

Google Scholar

[13] A. Grunwald and A. G. Olabi, Design of magneto-rheological (MR) valve, Sensors Actuators A Phys., vol. 148, no. 1, p.211–223, Nov. (2008).

DOI: 10.1016/j.sna.2008.07.028

Google Scholar