Theoretical Studies of the Effects of Magnetic Field on the Phase Transition of Swollen Liquid Crystal Elastomers

Article Preview

Abstract:

The effect of magnetic fields on the swelling of liquid crystal elastomers (LCE) dissolved in liquid crystal (LC) solvent have been studied. The Flory-Huggins model used to calculate the free energy of an isotropic mixing and the Maier-Saupe model used to calculate the free energy of a nematic mixing. Numerical integration method used to calculate the orientational order parameter and the total free energy of system (consists of : nematic free energy, elastic free energy, isotropic mixing free energy and magnetic free energy) and the calculation results graphed as a function of temperatures for various magnetic fields and as function of magnetic fields for various of temperatures. We find that the magnetic field shifts the transition points towards higher temperatures, increases the energy transition, and induces an isotropic phase to paranematic phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-54

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Warner and E.M. Terentjev, Liquid Crystal Elastomers, Revised Edition, Oxford University Press, Oxford, (2007).

Google Scholar

[2] K. Urayama, Electro-Opto-Mechanical Effects in Swollen Nematic Elastomers, in: W.H. de Jeu, Liquid Crystal Elastomers: Materials and Applications, Springer-Verlag, Heidelberg, (2012)119-145.

DOI: 10.1007/12_2010_107

Google Scholar

[3] M. Lavric, R. Podgornik and Z. Kutnjak, Liquid Crystal Elastomers, Faculty of Mathematics and Physics University of Ljubljana, Ljubljana, (2011).

Google Scholar

[4] G. Skačej and C. Zannoni, External field-induced switching in nematic elastomers : Monte Carlo case study, The European Physics Journal E. Vol. 20 (2006) 289-298.

DOI: 10.1140/epje/i2006-10020-6

Google Scholar

[5] T. Ikeda, J-I. Mamiya, Y. Yu, Photomechanics of Liquid-Crystalline Elastomers and Other Polymers, Angew. Chem. Int. Ed., Vol. 46 (2007)506 – 528.

DOI: 10.1002/anie.200602372

Google Scholar

[6] P. Pasini, G. Skačej and C. Zannoni, A Microscopic Lattice Model for Liquid Crystal Elastomers, Chemical Physics Letters., Vol. 413 (2005) 463 – 467.

DOI: 10.1016/j.cplett.2005.08.006

Google Scholar

[7] D. Jayasri, V.S.S. Sastry, and K.P.N. Murthy, Effect Of Cross-Link Density On The Nematic–Isotropic Phase Transition In Liquid Crystal Elastomers, Computational Materials Science. Vol. 44 Issue 1 (2008)185-189.

DOI: 10.1016/j.commatsci.2008.01.045

Google Scholar

[8] W. Zhu, M. Shelley, and P.P. Muhoray, Modeling and Simulation of Liquid Crystal-Elastomers, Physical Review E 83 (2011) 051703-1 - 051703-11.

Google Scholar

[9] Y. Yusuf, J-H Huh, P.E. Cladis, H.R. Brand, H. Finkelmann, and S. Kai, Low-Voltage-Driven Electromechanical Effects of Swollen Liquid-Crystal Elastomers, Physical Review E 71 (2005) 061702-1- 061702-8.

DOI: 10.1103/physreve.71.061702

Google Scholar

[10] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, New York, (1953).

Google Scholar

[11] M. Rubinstein, and R.H. Colby, Polymer Physics, Oxford University Press, Oxford, (2003).

Google Scholar

[12] I. Teraoka, Polymer Solutions: An Introduction to Physical Properties, John Wiley & Sons, Inc., Pub, New York, (2002).

Google Scholar

[13] S. Enders and B.A. Wolf, Polymer Thermodynamics: Liquid Polymer-Containing Mixtures, Spinger, Heidelberg, (2011).

Google Scholar

[14] F. Brochard, J. Jouffroy, and P. Levinson, Phase Diagrams of Mesomorphic Mixtures, J. Physique 45, (1984)1125 – 1136.

DOI: 10.1051/jphys:019840045070112500

Google Scholar

[15] H. -W. Chiu and T. Kyu, Equilibrium phase behavior mixtures, Journal of Chemical Physics, Vol. 103, No. 17 (1995) 7472-7481.

DOI: 10.1063/1.470318

Google Scholar

[16] K. Urayama, Y. Okuno, T. Nakao, and S. Kohjiya, Volume Transition of Nematic Gels in Nematogenic Solvents, Journal of Chemical Physics, Vol. 118, No. 6 (2003) 2903-2910.

DOI: 10.1063/1.1535896

Google Scholar

[17] H. -W. Chiu, Z.L. Zhou, T. Kyu, L.G. Cada, and L. -C Chien, Phase Diagram and Phase Sparation Dynmics in Mixtures of Side-Chain Liquid Crystalline Polymers and Low Molar Mass Liquid Crystals, Macromolecules, Vol. 29, No. 3 (1996) 1051-1058.

DOI: 10.1021/ma951190e

Google Scholar

[18] L.R.G. Treloar, The Physics of Rubber Elasticity 3rd Edition, Clarendon Press, Oxford, (1975).

Google Scholar

[19] J.E. Mark, Physical Properties of Polymers Handbook 2nd Edition, Springer Science + Business Media LLC, New York, (2007).

Google Scholar

[20] P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd, Clarendon Press, Oxford, (1993).

Google Scholar

[21] I. -C. Khoo and J. Prost, The Physics of Liquid Crystals, 2nd, John Wiley & Sons, Inc, Hoboken, (2007).

Google Scholar

[22] K. Urayama and T. Kato, Volume Phase Transitions of Nematic Gels under An External Field, Journal of Chemical Physics, Vol. 114, No. 8 (2001)3818-3822.

DOI: 10.1063/1.1342818

Google Scholar

[23] D. -K. Yang and S. -T. Wu, Fundamental of Liquid Crystal Devices, John-Wiley & Sons, Ltd, Chichester, (2006).

Google Scholar

[24] R.H. Chen, Liquid Crystal Displays Fundamental Physics and Technology, John-Wiley & Sons, Ltd, Hoboken, (2011).

Google Scholar

[25] D. Demus, J. Goodby, G. W. Gray, H. -W. Spiess, and V. Vill, Handbook of Liquid Crystals Vol. 1 Fundamentals, Wiley-VCH, New York, (1998).

DOI: 10.1002/9783527620760

Google Scholar

[26] S.V. Pasechnik, V.G. Chigrinov, and D.V. Shmeliova, Liquid Crystals : Viscous and Elastic Properties, WILEY-VCH Verlag GmbH & Co, Weinheim, (2009).

DOI: 10.1002/9783527627660

Google Scholar

[27] A. Matsuyama, Nematic Ordering in Mixtures of Polymers and Liquid Cystals, Res. Rep. Fac. Eng. Mie Univ., Vol. 27 (2002) 9-22.

Google Scholar

[28] J. Aramaki, Magnetic field-induced stability of a specific configuration and the asymptotic behavior of minimizers in nematic liquid crystals. Turkish Journal of Mathematics, Vol. 13 (2013)1001-1021.

DOI: 10.3906/mat-1206-43

Google Scholar

[29] P.P. Gaikwad and M.T. Desai. Liquid Crystalline Phase and Its Pharma Applications. International Journal of Pharma Research & Review (2013)40-52.

Google Scholar